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Abstract Contemporary theory in cognitive neuroscience
distinguishes, among the processes and utilities that serve cat-
egorization, explicit and implicit systems of category learning
that learn, respectively, category rules by active hypothesis
testing or adaptive behaviors by association and reinforce-
ment. Little is known about the time course of categorization
within these systems. Accordingly, the present experiments
contrasted tasks that fostered explicit categorization (because
they had a one-dimensional, rule-based solution) or implicit
categorization (because they had a two-dimensional,
information-integration solution). In Experiment 1, partici-
pants learned categories under unspeeded or speeded condi-
tions. In Experiment 2, they applied previously trained cate-
gory knowledge under unspeeded or speeded conditions.
Speeded conditions selectively impaired implicit category
learning and implicit mature categorization. These results il-
luminate the processing dynamics of explicit/implicit
categorization.

Keywords Category learning . Explicit cognition . Implicit
cognition . Response deadlines . Cognitive neuroscience

Categorization is an essential cognitive ability and an impor-
tant topic of cognitive and neuroscience research (e.g., Ashby
& Maddox, 2011; Brooks, 1978; Knowlton & Squire, 1993;
Medin & Schaffer, 1978; Murphy, 2003; Nosofsky, 1987;
Smith & Minda, 1998). The contemporary categorization lit-
erature contains an influential multiple-systems perspective
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby &
Ell, 2001; Cook & Smith, 2006; Erickson & Kruschke, 1998;
Homa, Sterling, & Trepel, 1981; Rosseel, 2002) that proposes
that multiple categorization utilities in cognition use different
information-processing principles to serve different ecological
needs.

In particular, among the processes and utilities that serve
categorization, cognitive and neuroscience researchers have
distinguished between explicit and implicit categorization.
The explicit system learns using focused attentional processes
that target individual stimulus features. It learns through hy-
pothesis testing and something like logical reasoning. It de-
pends on working memory and executive attention. It pro-
duces category knowledge that is declaratively conscious.
The implicit system learns using multidimensional processes
that can integrate across stimulus features. It depends on
associative-learning processes to link stimulus to adaptive re-
sponses. It produces category knowledge that is opaque to
declarative consciousness. These processing attributes are
documented in many studies (e.g., Ashby et al., 1998;
Ashby & Maddox, 2011; Ashby & Valentin, 2005; Maddox
& Ashby, 2004; Maddox, Ashby, & Bohil, 2003; Maddox &
Ing, 2005).

Explicit and implicit categorization have been differentiat-
ed using rule-based (RB) and information-integration (II) cat-
egory tasks. In Fig. 1, each Category A and B instance (gray
and black symbols, respectively) is a conjoint stimulus pre-
senting values from perceptual dimensions X and Y. The RB
task (Fig. 1A) fosters explicit category learning. Category A
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and B instances are contrasted only by their Y-axis position. A
horizontal category boundary—that is, a dimensional rule
with a central criterion along the Y-axis—partitions the cate-
gories. The mean and variation along the X dimension are
identical for both categories, providing no useful information
for category decisions. Participants are not presented with the
whole stimulus space. They see individual instances with
feedback following each response, and they must discover
category rules within this trial-by-trial framework. Many re-
searchers have granted explicit rules an important role in cat-
egorization (e.g., Ahn & Medin, 1992; Erickson & Kruschke,
1998; Feldman, 2000; Medin, Wattenmaker, & Hampson,
1987; Nosofsky, Palmeri, & McKinley, 1994; Regehr &
Brooks, 1995; Shepard, Hovland, & Jenkins, 1961), and thus
fully understanding rule-based categorization remains an im-
portant empirical goal.

The II task (Fig. 1B) fosters implicit learning. This task is
oriented in the stimulus space so that the minor diagonal par-
titions the categories. Dimensions X and Y present partially
valid information for categorization. One-dimensional hy-
potheses are not adaptive. Participants must integrate informa-
tion across dimensions into a category decision. Humans’
category-learning systems do accomplish this integration—
but the resulting learning is procedural and inexpressible. II
tasks have also been influential in the literature (e.g., Brooks,
1978; Kemler Nelson, 1984; Maddox & Ashby, 2004; Smith,
Tracy, & Murray, 1993). To be clear, this article focuses on
explicit and implicit category learning, and on RB and II cat-
egory learning. However, we mean no implication that
humans have only these two categorization processes or util-
ities, or that all tasks can be pigeon-holed into one of these two
categorization processes or utilities. In fact, there is evidence
that other memory systems sometimes contribute to human
category learning (Casale & Ashby, 2008).

The RB and II tasks are an elegant minimal pair within
cognitive science, because they differ only in the analytic–
nonanalytic aspect that is crucial to their theoretical context

and to the present research. In all other respects—category
size, within-category exemplar similarity, between-category
exemplar separation, the discriminability of the categories,
the d′ of the category task, the proportion correct achievable
by an ideal observer—the tasks are precisely matched. The
tasks are simply rotations of the same exemplar distributions
45 degrees through stimulus space. Thus, RB and II tasks are
matched for every aspect that could affect difficulty a priori.
Confirming this equivalency, two studies have shown that
these category tasks are matched for learning difficulty when
they are learned by a species (pigeons, Columba livia) that
may lack the ability to form dimensional category rules
(Smith et al., 2011; see also Smith et al., 2012). Robert
Cook (personal communication, Dec. 2013) has demonstrated
for a third time pigeons’ equivalent learning of RB and II
tasks.

The theoretical dissociation between explicit and implicit
category-learning utilities is supported by studies of their brain
organization and by studies of neuropsychological popula-
tions (Ashby & Ennis, 2006). Cognitive psychological re-
search has also empirically dissociated these systems
(Maddox & Ashby, 2004). For example, Waldron and
Ashby (2001) showed that only RB category learning was
impaired by a concurrent task that competed for the resources
of working memory and executive attention—consistent with
the hypothesis that the RB utility is dependent on those same
resources. Maddox et al. (2003) and Maddox and Ing (2005)
showed that II category learning is especially impaired if the
feedback is delayed—consistent with the hypothesis that the
implicit utility depends on the time-locked updating of neural
connections prompted by the reinforcement signal. The
multiple-systems perspective accounts intuitively for these
and many other results.

Most recently, Smith et al. (2014) asked participants to
learn RB and II tasks under deferred-rearranged feedback.
Summary feedback was given only after each trial block and
this feedback was rearranged with all positive outcomes and
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Fig. 1 Illustrative tasks. Two categorization tasks, showing the positions in XY space of Category A exemplars (gray symbols) and Category B
exemplars (black symbols)
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then all negative outcomes clustered separately. This
prevented participants from using trial-by-trial feedback to
form stimulus–response linkages. It prevented associative
learning. Smith et al. (2014) hypothesized that deferred-
rearranged feedback—by disabling associative learning—
would eliminate all II category learning but leave RB learning
unscathed (because participants could evaluate their explicit
category rule equally well after a trial or after a trial block).
This hypothesis was strongly confirmed. Smith et al. (2014)
also hypothesized that participants trying to learn II categories
under deferred-rearranged feedback would fall back onto RB
strategies—the only viable strategy in a reinforcement envi-
ronment that defeated associative learning. Participants did so.
No single-system account explains these results, but the idea
of explicit category rules held in working memory explains
them intuitively because explicit rules are not dependent upon
trial-by-trial immediate feedback. In fact, no single-system
account can account for even a few of the many reported
RB–II dissociations (Maddox & Ashby, 2004). Moreover,
Ashby (2014) demonstrated that the approach of state-trace
theory—used in recent articles to support the single-system
position (e.g., Newell, Dunn, & Kalish, 2010)—cannot sup-
port any inferences about the number of category-systems at
work in producing a data set.

Therefore, in this article we adopted the working hypothe-
sis—consistent with the consensus in neuroscience—that the-
se dissociable category-learning utilities exist, and we ad-
dressed an empirical problem that remains unexplored.
Thus, we considered for the first time the time course of learn-
ing in these two category-learning utilities.

What should this time course be like? The dominant theo-
retical idea came from Kemler Nelson’s (1984) seminal re-
search. She found that intentional learners adopt an analytic
mode of cognition that comprises stimulus analysis, deliberate
hypothesis generation/evaluation, and the formulation of ex-
plicit rules. This information-processing description
would suggest that RB category learning should be more de-
liberate, more cognitively controlled, more staged and system-
atic—and slower. In contrast, Kemler Nelson (1984) hypoth-
esized that incidental learners adopt a nonanalytic mode of
cognition that depends on the direct, nonderived, immediate
response to unanalyzed stimulus wholes. It could be predicted
to be faster, and, in fact, Smith and Kemler Nelson (1984)
showed that it could be faster.

Cognitive–developmental research supported the same the-
oretical intuitions. Garner’s (1974) speeded-classification
tasks revealed that young children, children with mental retar-
dation, and impulsive children dimensionalize their perceptual
worlds less strongly than adults. They appreciate stimuli more
holistically. They group items more often by unanalyzed, mul-
tidimensional similarity than by sharply attended single stim-
ulus features. Formally, they treat perceptual dimensions as
more integral (not attentionally separated) than separable

(attentionally separated—Kemler, 1982a, b; Shepp, Burns,
& McDonough, 1980; Smith & Kemler Nelson, 1984, 1988;
Ward, 1983). The organizing theme in this literature was that
those populations—lacking the mature complement of reflec-
tive, analytic–dimensional cognitive utilities—were reliant on
an implicit, immature, and impulsive mode of nonanalytic
cognition. This theme would point to a faster unfolding for
the nonreflective, nonanalytic processes of II category
learning. Broadbent (1977) also distinguished global percep-
tual processing (fast and effortless) from detailed perceptual
processing (slow and effortful). Other two-stage models of
stimulus comparison have contrasted a fast, preattentive com-
parator that operates on wholes and a slower, optional com-
parator that checks feature by feature (e.g., Bamber, 1969;
Krueger, 1973). Therefore, a natural hypothesis in our study
was that II category learning would be more robust facing
severe reaction-time deadlines.

But there is another viable hypothesis. Young children
sometimes perseverate on task-irrelevant stimulus features
(Aschkenasy & Odom, 1982; Kemler, 1978; Shepp et al.,
1980; Smith & Kemler Nelson, 1988). In such cases, children
are impulsively analytic processors, not impulsively holistic
ones. This might argue for the possibility of a narrow dimen-
sional focus in a categorization task under strict response
deadlines. Huang-Pollock, Maddox, and Karalunas (2011) re-
cently showed that children have greater difficulty than adults
transitioning from one-dimensional, RB strategies to the ap-
propriate II approach. This recent finding complements the
previous work of Ward and Scott (1987; see also Ward,
1988; Ward, Vela, & Hass, 1990), who studied category learn-
ing by young children and found that they were sometimes
engaged not in holistic processing but in perseveratively
analytic processing. Likewise, Smith and Shapiro (1989) stud-
ied adults’ speeded category learning. They found that speed-
ed conditions sometimes produced narrow, rigid analysis, as
participants chose any attribute in a temporal storm and stuck
to it rigidly despite the errors it caused. Lamberts (1998) also
found that under deadline conditions, categorization perfor-
mance grew dependent on single stimulus dimensions. Thus,
another viable hypothesis in our study was that RB category
learning—that allows this narrow dimensional focus—would
be more robust facing severe response deadlines.

Predictions

Research like that of Smith and Kemler Nelson (1984), Garner
(1974), and Ell, Ing, and Maddox (2009) illuminates the de-
liberate, controlled, working-memory intensive characteristics
of RB learning. Response deadlines could disrupt the system-
atic, hypothesis-testing behavior supporting explicit categori-
zation. These studies have suggested that explicit categoriza-
tion should be hurt by response deadlines.
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Alternatively, studies involving delayed-feedback in sim-
ple category tasks with deferred-delayed feedback (e.g.,
Maddox et al., 2003; Maddox & Ing, 2005; Smith et al.,
2014) show that II learners then fall back on non-optimal
RB strategies. Furthermore, cognitive–developmental re-
search suggests that rigid, analytical, single-dimensional anal-
ysis can overpower appropriate holistic processing in children.
These studies as well as speeded-categorization studies
(Lamberts, 1998; Smith & Shapiro, 1989) suggest that II cat-
egory learning might be hurt under response deadlines.

Experiment 1

Experiment 1 explored response deadlines as a possible con-
straint on RB or II category learning. We used the RB–hori-
zontal (RBh) and II–minor (IIm) diagonal tasks (Fig. 1A and
B, respectively) because pilot data had shown that under stan-
dard conditions they produced good learning, typical learning
curves, and consistently appropriate decision strategies as
shown by formal-mathematical modeling. This pilot data is
described in the supplementary materials. Participants learned
RBh or IIm tasks under unspeeded conditions or facing strict
deadlines for making categorization responses. This compar-
ison gave us a first look at the time course of RB and II
category learning.

Method

Participants The participants were 124 undergraduates from
the University at Buffalo (UB)—with the demographic char-
acteristics of UB’s Department of Psychology Research
Participant Group—who participated as partial fulfillment of
a psychology course requirement. There were 31 participants
in each of the four conditions: RB-unspeeded, RB-deadline,
II-unspeeded, and II-deadline.

Stimuli The stimuli were unframed rectangles containing
green lit pixels, presented on a black background in the com-
puter screen’s top center. The rectangles varied in size and the
numbers of lit pixels. There were 101 sizes (Levels 0–100). A
rectangle’s width in pixels was calculated as 100 + Level. Its
height was given by round(width/2). Rectangles varied from
100 × 50 (Level 0) to 200 × 100 (Level 100). Dimension Size
is the X-axis in Fig. 1’s stimulus spaces.

The rectangles’ proportional pixel density—that is, the pro-
portion of the total pixel positions illuminated—also had 101
levels. A level’s proportional density was given by .05 ×
1.018Level. For Level 0, the proportional density was .05. For
Level 100, proportional density was .2977. Dimension
Density is the Y-axis in Fig. 1’s stimulus spaces. Stimuli were
viewed from about 24 in., presented on a 17-in. monitor (800
× 600 resolution). Figure 2 illustrates the stimulus space by

showing its four corners—Stimulus 0 0 (lower left, small–
sparse), Stimulus 100 0 (lower right, big–sparse), Stimulus 0
100 (upper left, small–dense), and Stimulus 100 100 (upper
right, big–dense).

Category structures Category exemplars were chosen using
Ashby and Gott’s (1988) randomization technique. Categories
were defined by bivariate normal distributions along two stim-
ulus dimensions that ranged along an abstract 0-to-100 scale.
Table 1 gives the specifics of the statistical distributions that
defined the RBh and IIm category tasks. As each category
exemplar was selected from a category distribution as a coor-
dinate pair in abstract stimulus space, the abstract values were
transformed into concrete stimuli with two visual features
(size, density) according to the formulas already given.
Following the procedures in Smith et al. (2014), each partic-
ipant received his or her own sample of randomly selected
category exemplars appropriate to their assigned category
task. To control for statistical outliers, category exemplars
were not presented if their Mahalanobis distance (e.g.,

Fig. 2 Illustrative stimuli. The stimuli were unframed rectangles
containing green illuminated pixels. Box Size (dimension X) and Box
Density (dimension Y) had 101 levels (Levels 0 to 100) that were
concretized into stimuli using formulae specified in the text. Shown are:
Stimulus 0 0 (small–sparse), Stimulus 100 0 (big–sparse), Stimulus 0 100
(small–dense), and Stimulus 100 100 (big–dense)

Table 1 Distributional characteristics of the category tasks

Task Category Mean X Mean Y Var X Var Y Covar XY

RBh A 50.00 35.86 355.55 16.33 0

B 50.00 64.14 355.55 16.33 0

IIm A 40.00 40.00 185.94 185.94 –169.61

B 60.00 60.00 185.94 185.94 –169.61

RB: rule-based; II: information-integration; h: Horizontal (Fig. 1A); m:
minor diagonal (Fig. 1B)
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Fukunaga, 1972) from the category mean was greater than
3.0. Instead, other potential exemplars were selected randomly
until the distance criterion was met. The two category struc-
tures are shown in Fig. 1. For the RBh task, only density was
relevant to correct categorization. For the IIm task, both di-
mensions were partially informative about correct categoriza-
tion. Information had to be integrated across dimensions to
support performance.

Categorization trials Each trial consisted of a pixel box of a
designated size and a designated density for that trial, present-
ed at the center-top of a computer screen against a black back-
ground. Below each stimulus was a letter BA^ and a letter BB^
toward the left and right side of the screen, respectively, and a
cursor in the middle. To assign the stimulus to Category A
or B, participants pressed the S or L key (spatially corre-
spondent on the keyboard to the BA^ and BB^ on the
screen). Once either key was pressed, feedback was im-
mediately given.

When the participant assigned the stimulus to the correct
category, he or she received a high-pitched Bwhoop^ sound.
Immediately following this, CORRECT +1 was displayed in
green text for about half a second. If the participants were
incorrect, they were given an 8-s timeout, accompanied by a
low-pitched Bbuzz^ sound. During the timeout, INCORRECT
–1 appeared on the screen in red text. For each trial, the par-
ticipant’s cumulative score was also shown, belowCORRECT
+1 or INCORRECT –1.

We made Experiment 1 responsive to two current method-
ologies in this area. Some have instituted a masking stimulus
that appears where the stimulus had been just after the partic-
ipant responds BA^ or BB^ and before the delivery of feed-
back. This prevents participants from keeping the stimulus
that they had just seen available in iconic memory as rein-
forcement arrives (Maddox et al., 2003; Maddox, Bohil, &
Ing, 2004; Nomura et al., 2007). Others have not deemed this
mask necessary (Ashby & Crossley, 2010; Casale, Roeder, &
Ashby, 2012; Smith, Beran, Crossley, Boomer, & Ashby,
2010).

To incorporate both methodologies, participants with
masking saw a solid green rectangle flashed briefly on the
screen where the stimulus had been after the participant had
assigned the stimulus to Category A or B. The mask used was
the same size in all trials, and was larger than the largest
possible rectangle. Following the brief mask, feedback was
given immediately. Participants without masking saw the cat-
egorized stimulus disappear and then feedbackwas given with
the backdrop of a black, blank screen. This methodological
variation apparently made very little difference in either the
behavior of the tasks or in the unspeeded–speeded contrasts
we observed. Sixty-four participants completed the task with
masking (16 per condition). Sixty participants completed the
task without masking (15 per condition).

In the speeded or deadline condition, participants were also
penalized when they did not answer within the 600-ms dead-
line. So, not responding in time was treated as an error.
Participants received the 8-s error buzz while LATE –1 ap-
peared on the screen in yellow text.

Instructions Participants were told that they would catego-
rize boxes of green pixels into Category A or B. They were
told that theywould have to guess at first, but would learn how
to respond correctly. They were told about gaining or losing
points for correct or incorrect responses, and about the feed-
back and accompanying sounds. The instructions also
reflected the speeded and unspeeded contingencies.
Participants were told that they would have very little time
to answer (deadline condition) or as much time as needed to
answer (unspeeded condition). Finally, they were told about
the cash prizes that would be given to participants with the
highest scores in the experiment, which we hoped would mo-
tivate them in the task. Participants acknowledged having read
all the instructions, and the trials began.

Procedure Participants were placed randomly—based on
their sequential participant number—into the RB or II task
and into the speeded (deadline) or unspeeded condition.
Randomly selected categorization trials continued until the
session duration of 50 minutes was reached.

Formal modeling Formal models (Maddox & Ashby, 1993)
let us characterize the decisional strategies of individual par-
ticipants.Wemodeled the data from each participant’s last 100
trials when their performance strategy had matured. The
models tested and the procedures for modeling are described
briefly now.

The rule-based model assumes the participant uses a deci-
sion criterion on one stimulus dimension (rectangle size or
pixel density). Modeling specified the vertical or horizontal
line through the stimulus space that partitions best a partici-
pant’s Category A and Category B responses. This model has
two free parameters: a perceptual noise variance and a criteri-
on value on the relevant dimension.

The information-integration model assumes participants
divide the stimulus space using a nonvertical, nonhorizontal
linear decision bound—that is, using some diagonal through
the stimulus space. The outcome of modeling is to specify the
slope and intercept of the line drawn through the stimulus
space that would best partition the participant’s Category A
and Category B responses. This model had three free param-
eters: a perceptual noise variance and the slope and intercept
of the linear decision bound.

The best-fitting values for the models’ free parameters were
estimated using maximum-likelihood methods. Modeling
evaluated which model would have most likely created the
distribution in the stimulus space of the Category A and B
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responses that a participant actually made. The Bayesian
Information Criterion (BIC, Schwarz, 1978) determined the
best-fitting model BIC =r lnN – 2 lnL, where r is the number
of free parameters, N is the sample size, and L is the model’s
likelihood given the data.

Results and discussion

Prel iminary analyses : Two category- learning
processes First, we confirmed that there were qualitatively
different category-learning processes at work in the RB and
II tasks. These analyses helped rule out the state-trace single-
system arguments that Ashby (2014) discounted on indepen-
dent grounds, and the difficulty-based single-system argu-
ments that Smith et al. (2014) ruled out. Figure 3A shows a
backward learning curve for the RB-unspeeded condition. We
aligned the trial blocks at which participants reached criterion
(Block 0)—sustaining .85 accuracy for 100 trials—to show
the path by which they solved the RB task. RB performance
transformed at Block 0 (.57-precriterion; .93-postcriterion).
Performance stabilized. Learning ended. Accuracy topped
out. Figure 3A understates this transformation. Block –1 per-
formance is inflated because sometimes it contains the first
trials of participants’ criterion run (compare Block –2 perfor-
mance). Block 0 performance is deflated because sometimes
the criterion run starts a few trials into the block (compare
Block 1 performance).

Single-system exemplar models cannot fit this qualitative
change. They fit learning curves through gradual changes to
sensitivity and attentional parameters. The change in Fig. 3A
is not gradual. Thesemodels cannot explain so sharp a change,
or why there was no change in sensitivity or attention until
Block 0, or why sensitivity and attention suddenly surged
then. But all aspects of Fig. 3A flow from assuming the dis-
covery of an explicit categorization rule that suddenly trans-
forms performance.

We graphed the II-unspeeded condition in the same way
(Fig. 3B). This graph contains a general lesson for understand-
ing backward learning curves. The seeming performance
change at Block 0 is only a statistical artifact. To see this, note
that the performances averaged into Block –1 cannot be .85,
.90, .95, or 1.0. (These criterion performance levels defined
Block 0 and they would redefine Block –1 as Block 0.)
Therefore, the distribution of Block –1 performances is trun-
cated high. Likewise, the performances averaged into Block 0
can only be .85, .90, .95, or 1.0. Only these can define criterion
and occur at Block 0. The distribution of Block 0 perfor-
mances is truncated low. If one assumes the same underlying
competence both pre- and post-criteria, but samples only
blocks that fit the pre- and post-performance criteria, trunca-
tion alone produces an expected performance gap of .16 be-
tween pre- and post-criterion. Remarkably, this is what partic-
ipants showed (.17) in their backward curve for the II task.
Thus, Fig. 3B shows no learning transition at criterion,
only sampling constraints caused by the definition of cri-
terion. In contrast, extensive simulations show that
Fig. 3A’s pre- and post-criterion performances are so ex-
treme that they are true-score estimates of the underlying
competence—they are unaffected by sampling constraints.
All of Fig. 3A’s transition reflects a change in underlying
competence.

II learning was gradual and incremental with no sudden
transition. This is the category-learning process that single-
system exemplar models fit well and that represents an asso-
ciative form of category learning that it is important to under-
stand well. Exemplar models have contributed by increasing
our understanding of this system. However, the RB transition
reveals a qualitative transition from chance to ceiling perfor-
mance that cannot be explained by this single-system theory.
RB–II dissociative phenomena like that demonstrated here
clearly indicate that there are two category-learning utilities,
not just one.

Fig. 3 (A, B) Backward learning curves for RB-unspeeded and II-unspeeded participants in Experiment 1, constructed as described in the text
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Nor can one resort to differential difficulty to explain RB–
II dissociative phenomena like that shown here. These tasks
are controlled for every structural aspect of difficulty (see the
introduction), so appealing to intrinsic perceptual–discrimina-
tive difficulty is impossible. Such an appeal would also ignore
that the nature of the learning trajectory is profoundly different
between the tasks. For those interested in a fuller discussion of
the difficulty hypothesis, we have included it in the supple-
mentary materials.

Concluding provisionally that there were two different
category-learning processes at work in our RB and II tasks,
we proceeded to examine the effects of the deadline condition
on these two processes.

Accuracy-based analyses Figure 4 shows performance
across tasks and deadline conditions for the first thirteen 20-
trial blocks from the beginning of the task. To compare par-
ticipants’ final levels of learning across tasks and deadline
conditions, we found the proportion correct for all participants
in their last 100 category-response trials. We excluded late
trials from the analysis because those stimuli were
neither categorized correctly nor incorrectly, and because the
second type of error (lateness—that occurred only in the dead-
line conditions) would change the definition of performance
level across the conditions of interest.

These proportion-correct data were analyzed using the
GLM procedure in SAS 9.3. The analysis was a three-way
analysis of variance (ANOVA) with task-type (RB, II), mask
type (present, absent), and condition (unspeeded, deadline) as

between-participants factors. The ANOVA produced just the
following two significant effects. There was a significant main
effect of condition, F(1, 116) = 29.50, p < .0001, ηp

2 = .203,
indicating that terminal levels of performance were higher in
the unspeeded condition. Participants were .88 and .74 correct
during the unspeeded and deadline conditions, respectively.
The analysis also revealed a significant interaction between
task and condition, F(1, 116) = 3.92, p = .050, ηp

2 = .033,
reflecting the fact that the deadline condition compromised
performance in the II task selectively. Participants learning
the II task were .88 and .69 correct in the unspeeded and
deadline conditions, respectively. The cost to the response
deadline was 19 %, a serious decline in performance.
Participants learning the RB task were .88 and .79 correct in
these conditions. The cost to the response deadline for RB
learners was only 9 %, less than half as much.

Post hoc comparisons were done to examine whether in
each of the tasks (RB, II) the last 100 deadline trials were
significantly less accurate than the last 100 unspeeded trials.
Tukey’s HSD test showed that in the II task, the deadline
condition was significantly less accurate. In the RB task this
was not the case. This confirms that introducing a deadline
hurt II more than RB category learning.

We conducted a complementary set of analyses that mea-
sured improvements in learning by comparing initial and ter-
minal levels of performance. These analyses are reported in
the supplementary materials, and they reached identical
conclusions.

Model-based analyses We modeled the performance of all
participants using procedures already specified. This let us
confirm that participants overall did adopt appropriate deci-
sion strategies. It let us search for strategy disruptions when
participants learn RB or II tasks under deadline conditions. It
let us ask whether deadline conditions might cause a system-
atic change in the character of participants’ decision
strategies that would further theoretical development in this
area.

Figure 5 shows the best-fitting decision bounds for the four
conditions. The decision bounds for the RB-unspeeded partic-
ipants were tightly organized along the midline of the Y di-
mension. They chose consistently an appropriate strategy to-
ward completing the RBh task by applying a one-dimensional
rule involving density. The decision bounds for the RB-
deadline participants were remarkably similar, confirming
from the perspective of formal modeling that the deadline
had little effect on RB category learning. Smaller aspects of
the data confirm this as well. The number of guessers in the
two conditions was about the same: four and six in RB-
unspeeded and RB-deadline conditions. The number of par-
ticipants with strictly one-dimensional decision bounds on the
Y-axis actually increased from the unspeeded condition to the
deadline condition, from 15 to 19. If anything, participants

Fig. 4 Average proportion correct over the first thirteen 20-trial blocks
for the RB-unspeeded, RB-deadline, II-unspeeded, and II-deadline con-
ditions in Experiment 1. The averages include the data from the 117 out of
124 participants who completed at least 260 trials
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became more analytic under deadline. This is good to bear in
mind as we consider next decisional strategies in the II cate-
gory tasks. In short, all modeling results converged with the
accuracy results to suggest that deadline conditions hardly
affected participants’ RB category learning and decision
strategies.

The decision bounds for the II-unspeeded participants were
largely organized appropriately along the minor diagonal of
the stimulus space. These participants chose collectively a
decision strategy for the II task by which they learned to inte-
grate the informational signals provided by the two stimulus
dimensions.

In sharp contrast, the decision bounds for the II-deadline
condition look like a game of Pick Up Sticks. Modeling con-
firmed that the deadline condition had a seriously negative
impact on II category learning. Smaller aspects of the data
confirm this as well. The deadline requirement increased the
number of guessers from zero in the II-unspeeded condition to
seven in the II-deadline condition. These participants cannot
be shown in Fig. 5—and therefore the figure actually under-
estimates the learning disorganization caused by the deadline.
Strikingly, the deadline also increased the number of partici-
pants who had one-dimensional decision bounds from five to
13. This suggests that speed actually pushed participants

toward more analytic and dimensional decisional strategies
in the II task, a suggestion that we pursue in the discussion.
Of course, these strategies were inappropriate to the II task.

Experiment 2

Experiment 2 explored the effect of a response deadline on the
application of already trained category knowledge. Now par-
ticipants were trained (140 trials) in either the RBh task or the
IIm task. These tasks were chosen for reasons already de-
scribed and discussed in the supplementary materials. Then,
in two successive 140-trial transfer phases, participants ap-
plied their category knowledge under unspeeded and speeded
conditions. These transfer phases were presented to every par-
ticipant but order was counter-balanced across participants
(unspeeded–speeded, speeded–unspeeded).

Method

Participants Participants were 89 University at Buffalo un-
dergraduates who participated as partial fulfillment of a
psychology-course requirement. The data from 17 participants
were not analyzed because they barely learned (<70 % correct

Fig. 5 The decision bounds that provided the best fits to the last 100 category responses of the participants in RB-unspeeded, RB-deadline, II-
unspeeded, and II-deadline conditions in Experiment 1
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on the last training block). The data from three participants
were not analyzed because they showed a significant drop in
their speeded or unspeeded phases from the first 40 trials to the
last 40 trials (an effect of fatigue or loss of task engagement).
The data from nine participants were not analyzed because
they did not complete all 420 trials (three 140-trial phases).
There were 15 participants in each of four counterbalanced
conditions: RB unspeeded–speeded (RBUS), RB speeded–
unspeeded (RBSU), II unspeeded–speeded (IIUS), and II
speeded–unspeeded (IISU).

Procedure All aspects of the stimuli, feedback, the category
structures, the category tasks, and the formal modeling were
like those described in Experiment 1.

Results and discussion

Training trials Figure 6A shows by 20-trial blocks the aver-
age proportion correct achieved during training by each group.
Participants showed robust learning. Participants in the RB
and II conditions, respectively, improved over seven blocks
from .67 to .92 and from .64 to .85. They improved overall
from .66 to .89 correct. The shorter training phase in
Experiment 2 than in Experiment 1 produced a very small
RB performance advantage at the end of training. The training
phase gave us a sound basis for comparing the unspeeded and
speeded application of trained category knowledge in the test-
ing phases that followed next.

Unspeeded vs speeded categorization Figure 6B shows, by
20-trial blocks the average proportion correct achieved during
the speeded and unspeeded testing phases by each group. To
compare unspeeded and speeded categorization, we found the
overall proportion correct of all participants in the 140-trial
testing phases. In scoring performances, the trials on which
participants responded too slowly to meet the response-time
deadline were excluded from analysis because those stimuli
were not categorized correctly or incorrectly. Therefore, the
proportions correct are based on fewer than 140 trials for each
participant in the deadline conditions of the experiment. This
also explains why in Fig. 6 there are only six blocks for the
deadline conditions.

These proportion-correct data were analyzed using the
GLM procedure in SAS 9.3. The analysis was a three-way
analysis of varianace (ANOVA) with task-type (RB, II) and
condition order (unspeeded–speeded, speeded–unspeeded) as
between-participants factors, and condition (speeded,
unspeeded) as a within-participants factor. The ANOVA pro-
duced just three significant effects.

First, there was a significant main effect for task, F(1, 56) =
15.22, p < .001, ηp

2 = .212, indicating that performance levels
were higher in the RB condition (.89 correct overall) than in
the II condition (.83 correct overall).

Second, there was a significant main effect for condition,
F(1, 56) = 83.09, p < .001, ηp

2 = .593, indicating that perfor-
mance levels were higher in the unspeeded condition (.90
correct overall) than in the speeded condition (.82 correct
overall).

Third, and most important, there was a significant interac-
tion between task-type and condition, F(1, 56) = 3.99, p =
.051, ηp

2 = .068. This suggested that the speeded condition
compromised performance in the II task to a greater degree. II
participants were .88 and .78 correct in the unspeeded and
deadline conditions, respectively. The cost to the response
deadline on trained II categorization was 10 %, a serious de-
cline in performance even excluding the trials responded too
late. RB participants were .92 and .86 correct in these condi-
tions. The cost to the deadline on trained RB categorization
was only 6 %, about half as much. There was no significant
main effect or interaction with condition order (speeded-
unspeeded, unspeeded, speeded). However, see the supple-
mentary materials for figures of task and condition perfor-
mance during testing by condition order. Post hoc compari-
sons explored whether in each task (RB, II) the deadline trials
were performed less accurately. Tukey’s HSD test showed that
the deadline condition was significantly less accurate in both
cases. The interaction already described confirms in addition
that the II task suffered the larger impairment.1

Model-based analyses We modeled the performance of all
participants using the procedures already specified. This let us
evaluate how deadline conditions affect participants’ already
learned decision strategies in RB and II tasks.

Figure 7 shows the decision bounds for 30 RB and II par-
ticipants during their last 60 trials of the training phase, so that
we could model their most mature category performance in
training. The decision bounds for the RB participants were
organized appropriately along the midline of the Y dimension.
They chose collectively an appropriate strategy toward com-
pleting the RBh task by applying a one-dimensional rule in-
volving density. The decision bounds for the II participants
were organized appropriately along the minor diagonal of the
stimulus space. These participants chose collectively a deci-
sion strategy for the II task by which they learned to integrate
the informational signals provided by the two stimulus dimen-
sions. Thus, both RB and II category learners carried forward
appropriate categorization algorithms into their speeded and
unspeeded testing phases.

Figure 8 shows the decision bounds for RB participants
during their unspeeded and speeded testing phases. The deci-
sion bounds for these phases were remarkably similar,

1 We also analyzed participants using the appropriate decision
strategy at the end of training. The same performance pattern
was found but with less power. See the supplementary mate-
rials for analyses and descriptive statistics.
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confirming from the perspective of formal modeling that the
response deadline had little effect on RB categorization. Both
participant groups maintained well the horizontal decision
bounds that they had developed during the training phase. In
fact, the number of participants with strictly one-dimensional
decision bounds on the Y-axis actually increased from the
unspeeded to the speeded condition, from 16 to 22. If any-
thing, participants became more analytic under deadline.
Thus, the modeling results converged with the accuracy re-
sults to suggest that deadline conditions did not impair the
application of category learning and decision strategies by
RB participants.

Figure 8 also shows the decision bounds for II participants
during their unspeeded and speeded testing phases. In sharp
contrast to RB performance, modeling strongly confirmed that
the deadline condition had a seriously negative impact on the
application of II category knowledge and decision strategies.
In the II-unspeeded case, the decision bounds were organized

appropriately along the minor diagonal of the stimulus space.
But this was not true in the II-speeded case. The deadline
requirement decreased the number of appropriate diagonal
boundaries from 27 to 16. It increased from two to five the
number of participants who showed a vertical (X dimension)
decision bound that was not appropriately applicable to the
task. It increased from one to eight the number of participants
who showed a horizontal (Y dimension) decision bound that
also was not appropriately applicable to the task. Thus, re-
markably, the deadline condition increased dramatically the
number of participants who had one-dimensional decision
bounds from three to 13. This finding converges with several
other results in this article to suggest that speed actually
pushes participants toward more analytic and dimensional de-
cisional strategies. Indeed, Experiments 1 and 2 both showed
that this can be true even in an II task in which the one-
dimensional strategies are not adaptive. We pursue this sug-
gestion in the discussion.

Fig. 6 Training and testing performance in Experiment 2. (A) Average proportion correct over the 20-trial training blocks for participants in the RB and
II tasks. (B) Average proportion correct over the 20-trial testing blocks for unspeeded and deadline phases in the RB and II tasks

Fig. 7 (A, B) The decision bounds that provided the best fits for the last 60 trials of training for RB and II tasks in Experiment 2
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We conducted an additional modeling analysis of the par-
ticipants in the II task during the speeded condition by includ-
ing a conjunctive decision model. This decision bound is de-
fined by vertical and horizontal rules used simultaneously. For
example, a conjunctive-rule user might call all stimuli with a
size below 40 and a density above 70 BA^ and everything else
BB.^ We found six out of 30 II participants in the speeded
condition whose performance was best fit by a conjunctive
decision boundary. We looked at mean reaction time on trials
completed before the 600-ms deadline during the speeded
condition. Those with the appropriate diagonal bound (12 par-
ticipants) were still slower on average than the six
conjunctive rule users, t(16) = 2.24, p < .05 (0.46 s for partic-
ipants with diagonal boundaries and 0.43 s for participants
with conjunctive boundaries). Performance accuracy was
slightly better (68 % correct) for conjunctive than for diagonal
(64% correct) during the speeded condition but this difference
was not significant, t < 1. Nevertheless, the reaction time dif-
ferences suggest that even when participants use rules that
require the processing of both dimensions, they can respond
faster than participants using a dimensionally integrated deci-
sion boundary (see the supplementary materials for a table of
mean reaction times). Only one II participant out of 30 used
conjunctive rules in the unspeeded condition, suggesting that
time pressure may push II participants toward the use of both

unidimensional and conjunctive rules. These conjunctive-
model results suggest that the II performance vulnerability to
the deadline condition cannot simply be explained by use of
two dimensional criteria instead of one as in the RB case, since
the conjunctive rules also used two dimensional criteria but
they are still faster.

General discussion

Summary

We explored the time course of explicit and implicit category
learning, using new stimuli to broaden the literature.
Participants learned categories, or applied their trained cate-
gory knowledge, under unspeeded or speeded conditions.
Matched category tasks fostered explicit (ruled-based) or im-
plicit (information-integration) categorization. Figure 3’s
backward learning curves confirmed that there were different
learning processes at work in the RB and II tasks, a confirma-
tion that is also provided by the many RB–II dissociative
phenomena in the literature (Maddox & Ashby, 2004; Smith
et al., 2011, 2010, 2014; Waldron & Ashby, 2001). In partic-
ular, the RB task showed a qualitatively sudden arrival at a
task solution that is only consistent with the realization of a

Fig. 8 The decision bounds that fit best categorization responses in the testing trials of the RB-unspeeded, RB-deadline, II-unspeeded, and II-deadline
conditions in Experiment 2
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category rule by an explicit category-learning system (also,
Smith et al., 2014, Fig. 3).

Explicit RB category learning and trained RB categoriza-
tion were less impaired by the imposed deadline than were
implicit, II category learning and mature categorization.
Speeded conditions even appeared to push II participants to-
ward maladaptive, RB strategies that were poorly suited to the
II task.

Addressing a theoretical mystery

The present results help resolve a lasting issue. Kemler Nelson
(1984) joined Brooks (1978) to make the general theoretical
statement that intentional learners, adult learners, and reflec-
tive learners adopt analytic cognition that comprises stimulus
analysis, deliberate hypothesis testing, and rule formation.
The implication was that a variety of Bprimitivizing^ condi-
tions that interfered with explicit cognition would throw par-
ticipants off their analytic stride and produce II category learn-
ing instead. Thus, II learning was viewed as a fallback mode
of cognition: developmentally early, perhaps phylogenetically
prior, and available when explicit cognition is absent.

It is a tribute to this framework that it substantially held up.
There is sometimes a shift toward II category learning when a
concurrent cognitive load saps explicit attentional resources
(Kemler Nelson, 1984; Smith & Shapiro, 1989; Waldron &
Ashby, 2001). There is a shift toward II category learning seen
in cognitive depression that in a sense also saps explicit atten-
tional resources (Smith et al., 1993). There are supportive
developmental findings. Supportive cross-species research
has emerged as well (Smith et al., 2011, 2012).

But this framework has not accommodated well the effect
of response deadlines. Smith and Shapiro (1989) tried to
broaden the fallback-mode hypothesis to include the
primitivizing condition of speeded classification. But catego-
rization was not pushed by deadlines toward II responding as
occurs under concurrent loads or depression.

Why? The present results suggest several possible answers.
One possibility is that participants might be able to prepare
better before stimulus presentation in RB tasks than in II tasks.
In RB tasks, participants can rehearse their categorization rule
and response criterion before the stimulus appears, whereas no
analogous preparation seems possible in II tasks. Another
possibility is that II categorization may have properties of
timing, staging, and reinforcement delivery that limit the
speed with which category responses can be recruited and
category knowledge updated. In current descriptions, II learn-
ing is deemed to be dependent on a dopamine reinforcement
signal that must occur in the time window following a correct
category response. By this signal, the neural connections that
produced the response, and that may have brought the reward,
are strengthened. These timing and staging properties could
explain why II category learning and II categorization cannot

be rushed (Ashby & Ennis, 2006; Maddox & Ashby, 2004).
Then II categorization would not be the default mode under
speeded conditions. To the contrary, it would be more affected
by speed than RB categorization.

Then, too, response deadlines and dispositional impulsive-
ness might tilt processing toward RB categorization by
compromising II categorization. Though speeded conditions
demand that attentional resources be recruited and applied
quickly, our RB results suggest that these resources are agile
and quick in recruitment and application.

However, we note that our study used RB tasks with only a
one-dimensional decision criterion. Rule-based performance
under speeded deadlines could be different if the task involves
more than two categories. An important question for future
research is whether RB category learning can survive speeded
response deadlines in more complex tasks, such as the four-
category tasks used by Ell et al. (2009). These researchers
found that delaying the feedback signal on categorization tri-
als does impair RB learning in a complex four-category task,
but was not the case with a simple, one-dimensional rule
(Maddox et al., 2003). The same patterning might hold for
response deadlines, too.

We also point out that different results might obtain at the
point at which highly trained performers had achieved essen-
tial automaticity with RB and II category tasks. Models in
Hélie and Ashby (2009), Hélie, Waldschmidt, and Ashby
(2010), and Ashby, Ennis, and Spiering (2007) developed
the idea that both RB and II performance—in the end—come
to be controlled by stimulus–response linkages or associative-
ly triggered responding (also Logan, 1988, 1992). At that
point of categorization automaticity, response latencies be-
tween RB and II category responses could converge, though
they were different during earlier stages of category learning.

Dissociative frameworks in human categorization

Our results add a new empirical distinction between explicit
and implicit categorization. They show that response dead-
lines selectively impair II category learning and trained II
categorization. Others have shown that II category learning
is selectively impaired if feedback on categorization trials is
delayed for a few seconds (Maddox et al., 2003; Maddox &
Ing, 2005), if category learning is unsupervised (Ashby,
Queller, & Berretty, 1999; Ell, Ashby, & Hutchinson, 2012),
or if category knowledge is imparted observationally and not
through trial-based reinforcement (Ashby, Maddox, & Bohil,
2002). These results support the idea described above that II
category learning is served by a cascade of temporally orga-
nized (and temporally inflexible) events that surround the
reinforcement-mediated strengthening of dopamine-related
synapses (Ashby et al., 2007). They help explain why II cat-
egory learning cannot be rushed.
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Likewise, our results show that RB category learning—
especially the application of a single-dimensional rule—is ag-
ile facing response deadlines. Others have shown that RB
category learning survives feedback delays of many seconds,
observationally delivered category knowledge, unsupervised
learning conditions, and so forth. These results support the
general idea that RB categorization relies on rules and hypoth-
eses actively held in working memory. This also helps explain
why RB categorization is robust to speeded conditions in our
two-category task. It does not depend on a time-locked cas-
cade of events. RB categorization may be timeless in a sense,
because it is constantly available to consciousness, and it can
be applied or adjusted before, during, or after the trial.

Adaptive complementarity in categorization

The temporal dimension explored here points to an elegant
division of labor in categorization that is insufficiently appre-
ciated. Humans’ II category-learning system solves in one
basic way the problem of using consequences to associate
adaptive behaviors to stimuli. It creates stimulus–response
bonds in a sense and it may be allied to the processes of
conditioning. It is crucial to humans’ procedural learning. It
may have underlain vertebrates’ learning capacity for 100
million years or more.

This system has notable strengths. It reliably produces the
behavior with the highest probability of reinforcement. It pro-
vides powerful statistical-averaging and contingency-
prediction algorithms (Ashby & Alfonso-Reese, 1995). It is
slow and cautious to commit to behavioral solutions, as doc-
umented here by the absence of any sudden arrival at criterial
learning (also Smith et al., 2014). It is conservative and slow
to let successful behavioral solutions go (Crossley, Ashby, &
Maddox, 2013). It can operate out of consciousness and
awareness (e.g., Casale et al., 2012; Smith et al., 2014),
granting it the potential to have great phylogenetic depth.

But this system has constraints. It depends on particular
forms of information and reinforcement, on persistent event
repetition, and on a temporally bound cascade of perception–
behavior–feedback as already discussed that cannot be
disrupted, re-sequenced, or stretched or compressed in time.
The empirical dissociations discussed in the last section show
that II learning cannot occur with displacement, that is, at a
separate time or spatial location. New behavioral approaches
cannot be evaluated off-line. They cannot be chosen instantly
at need. The organism may not be able to learn anew before
unlearning the old (the class of extinction phenomena and
these are often threatened by recovery, reminder, and recidi-
vism effects—Crossley et al., 2013). This learning system
turns slowly with a wide radius.

The explicit system of category learning is a perfect com-
plement to this procedural system. Its role in cognition is in-
triguingly different. The present results show that it is not

necessarily rigidly time-locked. The empirical dissociations
discussed in the last section show that it does not need a fixed
sequence of stimulus, behavior, and feedback. It does not need
immediate feedback or even any feedback. The organism can
consider learning episodes off-line, with displacement.
Learning can occur suddenly at need (see Fig. 3A).
Extended processes of unlearning now no longer apply—a
new hypothesis can be tried out on the very next trial if war-
ranted. This learning system turns on a dime. It is an intriguing
aspect of contemporary cognitive and neuroscience research
in categorization that humans seem to have, among multiple
categorization utilities and processes, a Bfast-twitch^ catego-
rization utility that complements the Bslow-twitch^ categori-
zation utility within the procedural-learning system.

One sees from this discussion that the dissociative frame-
work describing explicit and implicit systems of categoriza-
tion continues to illuminate and enrich the cognitive literature
on categorization. It guides productive empirical research,
generates testable predictions, and expresses important adap-
tive complementarities among humans’ multiple categoriza-
tion utilities.
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