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A theoretical framework within neuroscience distinguishes humans’ implicit and explicit systems for
category learning. We used a perceptual-categorization paradigm to ask whether nonhumans share
elements of these systems. Participants learned categories that foster implicit or explicit categorization in
humans, because they had a multidimensional, information-integration (II) solution or a unidimensional,
rule-based (RB) solution. Then humans and macaques generalized their category knowledge to new,
untested regions of the stimulus space. II generalization was impaired, suggesting that II category
learning is conditioned and constrained by stimulus generalization to its original, trained stimulus
contexts. RB generalization was nearly seamless, suggesting that RB category knowledge in humans and
monkeys has properties that grant it some independence from the original, trained stimulus contexts.
These findings raise the questions of (a) how closely macaques’ dimensional categorization verges on
humans’ explicit/declarative categorization, and (b) how far macaques’ dimensional categorization has
advanced beyond that in other vertebrate species.
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Categorization is a crucial cognitive adaptation underlying many
aspects of learning and behavior. It is a focus of research with humans
(Ashby & Maddox, 2011; Brooks, 1978; Feldman, 2000; Knowlton &

Squire, 1993; Kruschke, 1992; Murphy, 2002; Nosofsky, 1987; Rosch
& Mervis, 1975) and animals (Cerella, 1979; Herrnstein, Loveland, &
Cable, 1976; Jitsumori, 1994; Lea & Ryan, 1990; Smith, Redford, &
Haas, 2008; Vauclair, 2002; Wasserman, Kiedinger, & Bhatt, 1988;
Zentall, Wasserman, Lazareva, Thompson, & Rattermann, 2008).

Humans may have multiple category learning systems (Ashby &
Ell, 2001; Cook & Smith, 2006; Erickson & Kruschke, 1998;
Homa, Sterling, & Trepel, 1981; Nosofsky, Palmeri, & McKinley,
1994; Rosseel, 2002; Smith & Minda, 1998). For example, neu-
roscientists have distinguished an implicit procedural learning
system from an explicit rule learning system (Ashby & Valentin,
2005; Maddox & Ashby, 2004; Smith, Berg, et al., 2012). The
implicit system learns through contemporaneous reinforcement
signals to associate stimuli to responses in a process akin to
conditioning (Ashby & Waldron, 1999). Participants lack declar-
ative access to implicit category knowledge. The explicit system
learns by testing hypotheses and deriving rules about dimensions
relevant to categorization. It relies on working memory and exec-
utive functions. Participants have declarative access to explicit
category knowledge. Many have granted explicit rules an impor-
tant role in human categorization (Ahn & Medin, 1992; Ashby &
Ell, 2001; Erickson & Kruschke, 1998; Feldman, 2000; Medin,
Wattenmaker, & Hampson, 1987; Nosofsky et al., 1994; Regehr &
Brooks, 1995; Shepard, Hovland, & Jenkins, 1961).
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The implicit–explicit distinction is based on research using
tasks like those in Figure 1. Each member of Category A (�) and
B (�) is a conjoint stimulus presenting values along two percep-
tual continua. In one case (A), the diagonal of the stimulus space
partitions the categories. Both dimensions present useful informa-
tion for responding. Ideally, one would integrate information
across dimensions to reach a category decision. Thus, this is an
information-integration (II) task. Participants are not shown this
category space. They must discover the II principle from within the
task’s trial-by-trial framework (stimulus, response, reinforcement).

In the other case (B), a vertical boundary partitions the catego-
ries. Category A and B instances are distinguishable by their x-axis
value. The y-axis values provide no category information. One
approach to solving this rule-based (RB) task is to discover this
dimensional rule by selective attention and hypothesis testing
within the task’s trial-by-trial framework. However, by using this
standard RB task label, we do not mean to imply that learning in
this task must be by abstract, explicit, declarative rules. Learning
in RB tasks might also be facilitated by simpler, selective-attention
processes that lack important features of humans’ explicit rules.

II and RB tasks are a useful minimal-contrast pair. Their cate-
gories are matched for size, discriminability (d=), within-category
exemplar similarity, and between-category exemplar separation.
The tasks are simply different rotations within stimulus space.
Their equivalence has been confirmed in independent demonstra-
tions that pigeons (Columba livia) learn II and RB tasks equally
quickly to the same level (Smith et al., 2011; R. G. Cook, personal
communication, December 2013).

Despite their equivalence, II and RB tasks have shown many
empirical dissociations—in behavioral, brain imaging, and neuro-
psychological patient studies (Ashby, Maddox, & Bohil, 2002;
Ashby, Queller, & Berretty, 1999; Maddox & Ashby, 2004; Mad-
dox, Ashby, & Bohil, 2003; Maddox & Ing, 2005; Smith et al.,
2014). For example, Smith et al. (2014) let participants learn II and
RB tasks, but with feedback delivered in summary form after each
trial block. Summary feedback eliminated II learning because it
disabled the conditioning processes that link stimuli to responses.
Summary feedback preserved RB learning, because participants

could still explicitly evaluate their rule and its efficacy at the end
of each trial block.

The multiple-systems framework predicts these dissociations a
priori, strengthening its support. However, the theoretical stakes
are high, just as when the possibility of multiple memory systems
emerged. There remains an ongoing debate. Some still argue that
many of the relevant phenomena can be explained using a unitary
category learning system (e.g., Dunn, Newell, & Kalish, 2012;
Newell, Dunn, & Kalish, 2010; Newell, Moore, Wills, & Milton,
2013; Nosofsky, Stanton, & Zaki, 2005; Stanton & Nosofsky,
2007). It is a political, contentious issue. This article does not
prejudge the issue. We adopt the multiple-systems idea as our
working hypothesis. We accept, as many others have, the impor-
tance of rules for humans as they categorize. We seek to study the
evolutionary roots and gradual emergence of rules in category
learning. The evidence is sufficient to justify this working hypoth-
esis and empirical approach. Of course, we do not claim that
macaques have explicit, declarative rule knowledge. They may
well have taken only the initial steps toward humans’ capacity for
attentional focusing, dimensional categorization, and rule use.
Indeed, the gradual emergence of explicit categorization is the
central theoretical backdrop of our article. This emergence is an
important theoretical issue for both associative and cognitive the-
orists.

A strength of the II–RB methodology is that it lets one explore
attention and dimensional categorization in animals behaviorally,
with no reliance on verbal report. One need only rotate the axis of
the task, from II to RB (see Figure 1) to ask whether the cognitive
systems of different species are dimensionally polarized in the
sense of treating one-dimensional category separations with psy-
chological privilege. If they are, then the dimensional task orien-
tation—the RB task—will admit strong and rapid learning, just as
a polarizing filter will strongly admit light when aligned with the
axis of the light’s polarization. If cognition in that species is not
dimensionally polarized, II and RB tasks will be learned at the
same speed to the same level. This discovery can be made for any
species that can perform behavioral discriminations.

Figure 1. Information-integration (a) and rule-based (b) category structures illustrated.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

323DIMENSIONAL CATEGORIZATION BY HUMANS AND PRIMATES



Using this approach, Smith, Beran, Crossley, Boomer, and
Ashby (2010) studied categorization in macaques (Macaca mu-
latta). Macaques, like humans, learned RB tasks more quickly than
II tasks, suggesting that they share some aspects of humans’
dimensional categorization system (but not necessarily all its ex-
plicit aspects). Smith, Crossley, et al. (2012) extended this obser-
vation to another primate lineage (capuchins [Cebus apella]). In
contrast, pigeons are indifferent to the II–RB rotation of the
category task (Smith et al., 2011). Their cognition is not dimen-
sionally polarized in the sense of preferring dimensional catego-
rization. The divergence among vertebrate lineages in this area
raises important questions about the evolutionary emergence of
selective attention, dimensional rules, and explicit categorization.

However, these cross-species observations only begin the com-
parative study of dimensional categorization. One also wants to
know how strong the homology is between humans’ and primates’
RB learning. One wants to know whether primates’ RB category
learning processes also depend on working memory, and whether
they represent dimensional hypotheses in similar ways. In this
article, we took an empirical step beyond the primate demonstra-
tions in Smith and colleagues (Smith et al., 2010; Smith, Crossley,
et al., 2012). We explored in a new way the strength of human–
primate homology by exploring the generalization of category
knowledge when transfer to new stimuli is required. If II and RB
category learning are different cognitively, and different in the
same way for humans and macaques, then the ability of humans
and primates to generalize their II and RB category knowledge
should contrast for the reasons described now.

Adaptive responses in II tasks are believed to be entrained by
reinforcement to the training stimuli. Therefore, II category learn-
ing should generalize to new stimulus contexts in a limited way
constrained by stimulus distance. II learning is also believed to be
implicit. Casale, Roeder, and Ashby (2012) have reported that no
participant among hundreds tested was able to declare the basis for
their II categorization responses. So there is no freestanding cat-
egory knowledge in working memory that can bridge generaliza-
tion to new stimulus contexts. For this reason, too, procedural
category knowledge might have limited generalizability to novel
stimuli.

In contrast, humans’ adaptive responses in RB tasks seem to
depend on an organizing rule held in working memory. This rule
might have substantial stimulus independence. A size rule, for
example, would transcend changes in perceptual features (e.g.,
color, shape). Moreover, the rule can reside in working memory to
help the categorizer bridge over to new stimulus contexts, just as
it did in Smith et al. (2014) to help the categorizer bridge over to
summary feedback at the end of a trial block. Accordingly, explicit
category knowledge might be more generalizable.

This II–RB difference has been demonstrated in humans. Casale
et al. (2012) found that generalization to novel stimuli was seam-
less in RB but not II tasks. We replicated and extended this
demonstration in Experiment 1. In Experiment 2, we tested ma-
caques’ generalization of II and RB category learning. Finding the
same differential–generalization effects would strengthen the ho-
mology between the dimensional categorization of humans and
macaques, and suggest that macaques’ RB task solutions share
with those in humans some cognitive features—among them some
abstractness and some stimulus independence. It could suggest that

macaques have taken the first steps toward humans’ capacity to
learn dimensional category rules.

General Method

Stimuli

Stimuli were unframed rectangles containing green illuminated
pixels (see Figure 2) presented top center on a black background of
a computer screen. The rectangles varied in size and number of
pixels lit. There were 101 size levels (Levels 0–100). A rectangle’s
width on the screen in pixels was given by 100 � level. A
rectangle’s height in pixels was given by round (width/2). Thus the
stimuli varied from 100 � 50 (Level 0) to 200 � 100 (Level 100).
Dimension size is the x axis in Figure 1’s abstract stimulus spaces.

Dimension Y in Figure 1 is proportional pixel density—that is,
the proportion of illuminated pixel positions. A level’s propor-
tional density was given by 0.05 � 1.018Level. For Level 0,
proportional density was 0.05 (5% of pixels illuminated). For
Level 100, proportional density was 0.2977 (30% of pixels illu-
minated). Stimuli were presented on a 17-in. monitor with 800 �
600 pixel resolution and viewed from about 24 in.

These stimulus dimensions complement existing RB–II research
that has mainly used the perceptual dimensions of tilt and spatial
frequency. The dimensions were also a strong choice here because
they received an initial empirical grounding with humans in Smith
et al. (2014). In Experiment 2, we extended for the first time use
of these materials to another species.

Category Structures

Figure 3 shows the II and RB category structures that allowed us
to study the generalization of category knowledge to untrained
regions of stimulus space. Smith et al. (2014) have shown that

Figure 2. Four stimuli illustrating the corners of the perceptual space:
stimulus 0 0 (small-sparse, lower left), stimulus 100 0 (big-sparse, lower
right), stimulus 0 100 (small-dense, upper left), and stimulus 100 100
(big-dense, upper right). See the online article for the color version of this
figure. See the online article for the color version of this figure.
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these tasks produce typical II and RB performance profiles and
foster different learning processes. Thus, our comparison of these
RB and II tasks was empirically and theoretically grounded be-
cause they ideally instantiate multiple-systems theory. Our choice
to compare one RB task to one II task fit common practice in the
literature.

In essence, we broke the category structures generally used in
II–RB research (see Figure 1) into separate training and general-
ization subtasks—respectively, the bottom pair and the top pair of
ellipses in each panel of Figure 3. Following training, we asked
how well humans and animals extended their category knowledge
to the stimulus distributions containing novel stimuli. We mea-
sured whether II generalization would falter relative to RB gener-
alization.

Category exemplars were chosen using established procedures
(Ashby & Gott, 1988). Categories were defined by bivariate nor-
mal distributions within size-density space. As each category ex-
emplar was selected as a coordinate pair in that space, the abstract
levels were transformed into concrete stimuli with two visual
features using the formulas already described.

To control for outliers, a random sample for a trial was not
presented if its Mahalanobis distance (e.g., Fukunaga, 1972) ex-
ceeded 3.0. X deviations greater than 13.725 and Y deviations
greater than 22.5—from the desired mean of the stimulus ellipse—
were disallowed to keep dimensional values within the 0–100
scale. Additional random samples were made until these criteria
were met. Table 1 shows the statistical characteristics of the
Category A and B distributions. For the RB task, only dimension
size carried category-relevant information. For the II task, dimen-
sions size and density carried relevant information that needed to
be integrated into a correct categorization decision.

Formal Modeling

We fit RB and II formal models (Maddox & Ashby, 1993) to
subjects’ final training data and initial generalization data to help
us understand how their decision strategies generalized to novel
stimuli. The RB model assumes that participants set a criterion
on one stimulus dimension (size or density). The modeling lets
us specify the horizontal or vertical line drawn through stimulus

Figure 3. (a) A training–generalization information-integration category structure. Open circles and plus signs,
respectively, indicate Category A and Category B stimuli. The bottom pair and top pair of stimulus ellipses,
respectively, were the defined categories during training and generalization. (b) A training–generalization
rule-based category structure, depicted in the same way.

Table 1
Distributional Characteristics for the Training and Generalization Category Tasks

Task Condition Category MX MY Var X Var Y Covar XY

II Training A 20.85 40.26 49.25 49.25 28.77
II Training B 40.26 20.85 49.25 49.25 28.77
II Generalization A 59.74 79.15 49.25 49.25 28.77
II Generalization B 79.15 59.74 49.25 49.25 28.77
RB Training A 36.28 22.5 20.48 78.02 0
RB Training B 63.72 22.5 20.48 78.02 0
RB Generalization A 36.28 77.5 20.48 78.02 0
RB Generalization B 63.72 77.5 20.48 78.02 0

Note. Covar � covariance; II � information integration (see Figure 3a); RB � rule based (see Figure 3b);
Var � variance.
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space that best partitions the subject’s Category A responses
from his or her Category B responses. The RB model has two
free parameters: a perceptual noise variance and a criterion
value on the relevant dimension. The II model assumes that
participants divide the stimulus space using a diagonal decision
boundary of some slope and intercept. The modeling lets us
specify the line that best partitions the subject’s Category A
responses from his or her Category B responses. The II model
assumes a general linear classifier in which subjects divided the
stimulus space using a linear decision bound. The modeling lets
us specify the line drawn through stimulus space, of any slope
and intercept, that best partitions the subject’s Category A
responses from his or her Category B response. The II model
has three free parameters: a perceptual noise variance and the
slope and intercept of the decision bound. The model-fitting
process estimated the best-fitting values for parameters and
evaluated which model would have created—with maximum
likelihood—the participant’s observed distribution of A and B
responses. Then, following our previous work, the best-fitting
model was chosen as the one with the smallest Bayesian infor-
mation criterion (BIC; Schwarz, 1978), which is defined as:
BIC � r lnN – 2 lnL, where r is the number of free parameters,
N is the sample size, and L is the likelihood of the model given
the data.

Hypotheses

Figure 3’s II and RB generalization tasks (the upper pairs of
ellipses) are equivalent structurally, as already discussed, so if a
common mechanism mediates RB and II learning, then one would
predict equivalent performance in both tasks. The II and RB
extension of category knowledge from training to generalization
tasks is identical also. That is, the decision boundary is extended
across the stimulus space in the same way. One would predict
equivalent II and RB generalization for this reason, too. The
distance by which category knowledge is extended is identical,
too, another reason to predict equivalent II and RB generalization.
The levels of generalization might be poor or good, but they would
be equivalent.

However, if the learning mechanisms underlying II and RB
tasks are different, then one would not predict equivalent gener-
alization. Multiple-systems theory predicts that II category knowl-
edge would falter facing novel stimulus contexts, because it is
grounded in conditioning processes yoked to training stimuli. But
RB category knowledge could generalize robustly if it embodies
an attentional principle or category rule, because rules exist apart
and away from the training stimuli (e.g., in working memory) and
could also apply to novel stimuli. For now, we will not assume any
particular associative or cognitive mechanism or level behind the
attentional principle or category rule, reserving that theoretical
consideration for the General Discussion section.

Experiment 1: Humans

Method

Participants. Undergraduates (N � 68; age � 19.6 years;
male � 42%; female � 58%) with apparently normal or corrected-
to-normal vision participated as a course requirement. Participants

were dropped from analysis—following our usual procedures—for
not completing the experiment (four II participants and one RB
participant), for showing reduced performance late in the session
(three II participants and two RB participants), and for not exceed-
ing chance in the last training block (two II participants and four
RB participants). The final dataset included 26 II and 26 RB
participants.

Procedure. The stimuli, category structures, and modeling
were described in the General Method section. Participants were
placed randomly into the II or the RB task. Each received his or her
own 200 randomly selected category exemplars appropriate to the
assigned task and chosen from the training stimulus distributions
(lower ellipses of Figure 3). This approach—also adopted by
Smith et al. (2014)—produces more generalizable results and a
procedure closer to that for the monkeys. This approach may also
be more ecological, because frequently category members (e.g.,
prey items) are sampled without replacement—because they are
eaten. Following training, participants received 100 random ex-
emplars from the generalization distributions (upper ellipses of
Figure 3). These trial counts followed existing human II–RB
studies (e.g., Smith et al., 2014). They were appropriate to humans
learning II and RB tasks. They were feasible given the session
length of one class period.

Macaques learn category tasks more slowly (e.g., Smith, Minda,
& Washburn, 2004), and are generally given more trials in proce-
dures than humans (e.g., Smith et al., 2010; Smith et al., 2008).
This was the case here, too, for it is essential to produce an even
learning playing field for the species. However, we point out in
advance that this training difference renders the human and ma-
caque experiments less comparable in one respect. That macaques
need more trials to learn RB tasks suggests that their RB learning
processes differ somewhat from those in humans, and perhaps less
conscious and explicit. Throughout, our goal is not to assert
identical processing by humans and macaques in RB tasks, but
rather to search for similarities and differences in that processing.

Categorization trials. A trial consisted of a pixel box of some
size and density. Below the stimulus were a letter (A and B) to the
left and right of the screen, respectively, with a cursor in the
middle. Participants assigned the stimulus to Category A or B by
pressing the S or L keyboard key to move the cursor to one of the
two response icons. These keys spatially corresponded to the
screen position of the A and B. Feedback was given immediately
upon response.

Following correct responses, participants received a “whoop”
sound, then a CORRECT � 1 message was displayed in green
text. Following incorrect responses, participants received a 2-s
“buzz” sound, followed by an ERROR – 1 message displayed in
red text for the duration of an 8-s timeout. For each trial, partici-
pants’ cumulative points were displayed below the green/red mes-
sages. The timeout is a typical feature of our research because it
motivates participants. It brought our human procedure closer to
that of the monkeys. At humans’ performance level in the present
tasks, these timeouts would have added about 2.5 min to the
session length for II participants compared with RB participants, a
negligible increase in an experimental session that was already
brief.

Instructions. Participants were told they would categorize
pixel boxes, having to guess at first but learning how to respond
correctly. They were told that they would gain/lose points for
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correct/incorrect answers. Feedback was explained. Participants
were told that cash prizes would go to the best-scoring participants.
These prizes were awarded. Participants acknowledged having
read the instructions and the trials began. At generalization, par-
ticipants were told that they would now categorize new kinds of
pixel boxes, still placing them into Category A or B.

Results

Accuracy-based analyses: Learning. Figure 4 shows hu-
mans’ average proportion correct in each 20-trial block during
training and generalization of II and RB tasks. RB participants
learned their task solution rapidly, progressing from 0.65 to 0.89
correct over the first 60 training trials. RB performance by humans
was highly typical of performance in RB category tasks generally.
On average, RB participants showed a strong improvement in
performance from 0.68 to 0.96 across two consecutive blocks.
Though Figure 4 shows rapid learning, these rapid changes across
just two blocks are smoothed away because different participants
make their transition at different points in the task. These rapid
improvements, also found by Smith et al. (2014), are one reason
the theoretical idea of humans’ explicit, declarative category learn-
ing is increasingly accepted, for they are most consistent with
explicit, declarative category learning. But, as we discuss in Ex-
periment 2, this interpretation need not apply to macaques’ dimen-
sional categorization.

II participants learned their task slower and to lower terminal
performance levels—up to 0.79 correct in 60 training trials and up
to 0.88 correct by the end of training. These aspects of perfor-

mance, including the slightly different RB and II training-
performance levels, are characteristic in human research. They are
crucial observations in this area, because they support that II
performance is subject to perceptual and representational error,
whereas RB performance involves different processing and is
protected by the application of a discrete, verbalizable rule. In
short, the different baselines confirm the different processing that
attends performance in RB and II tasks. The same effect was
present in the results of Casale et al. (2012).

This difference in baseline might make the results to come
conservative, because RB performance potentially has farther to
fall at transfer. Or, perhaps RB performance was so high that scale
compression would make it difficult to see the performance drop
caused by the transition to transfer. But participants were not at
ceiling, partially allaying this concern. Their performance had
generous room to fall. If at transfer, they had changed the posi-
tioning of their dimensional criterion, or switched to a rule along
the other dimension, it would have fallen. It is well documented
that RB processing can be disrupted and compromised. In our
view, the scale-compression idea has limited merit. RB perfor-
mance has a high baseline for crucial theoretical reasons, because
explicit rule processing by humans is easily replicable trial to trial,
and not because of a vague and atheoretical ceiling effect. The
theoretical reason for the higher RB baseline strengthens this
article’s theoretical framework, and the higher baseline is
grounded theoretically in many empirical demonstrations in the
literature.

Accuracy-based analyses: Transition to generalization. RB
participants had an average proportion correct of 0.90 in their first
block with untrained stimuli compared to 0.94 in their last training
block. So, the performance cost was only 0.04, t(25) � 1.76, p �
.09, Cohen’s d � 0.35, 95% confidence interval (CI) [�0.05,
0.74].1 In fact, just two participants accounted for most of this
small difference. Excluding them, participants were 0.95 at the end
of training and 0.93 at the start of generalization. From either
perspective, the transition to new stimuli was essentially seamless
for RB participants.

II participants had an average proportion correct of 0.71 in their
first block with untrained stimuli compared to 0.88 in their last
block of training. Here the performance cost was substantial, 0.17,
t(25) � 6.31, p � .001, Cohen’s d � 1.24, 95% CI [0.72, 1.74].2

Performance clearly faltered in the extension of II categorization
performance to untrained stimuli.

To confirm the interaction effect implied by these results, we
entered the proportion correct in the last block of training and the
first block of generalization into a two-way analysis of variance
(ANOVA) with categorization task (RB, II) as a between-
participants factor and test stage (training, generalization) as a
within-participant factor. The analysis found a significant main
effect for task, F(1, 50) � 21.27, p � .001, �p

2 � .30, with RB
performance higher overall than II performance. There was also a
significant main effect for stage, F(1, 50) � 35.21, p � .001, �p

2 �

1 When the proportion correct in the last two training blocks were
included, results were comparable, t(25) � 1.69, p � .10, Cohen’s d �
0.33, 95% CI [�0.07, 0.72].

2 When the proportion correct in the last two training blocks were
included, results were comparable, t(25) � 5.10, p � .001, Cohen’s d �
1.00, 95% CI [0.52, 1.47].

Figure 4. The proportion of correct responses in each 20-trial block for
26 humans who performed 200 training trials and 100 generalization trials
of an information-integration or rule-based category task (light and dark
symbols, respectively). Ten training blocks extend back from the training–
generalization horizon plotted at Block 0 (vertical line) to Block �10. Five
generalization blocks extend forward to Block 5.
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.41, with training performance higher overall than generalization
performance. Most important, there was a significant Task �
Stage interaction, F(1, 50) � 13.75, p � .001, �p

2 � .22, confirm-
ing that II performance selectively faltered entering generalization.

Model-based analyses. Humans learn rapidly in generaliza-
tion, as shown by the fact that their II performance decrease was
already reduced in the second 20-trial generalization block (see
Figure 4). Therefore, we challenged the resolution limits of our
modeling methodology to focus in on the most meaningful behav-
ioral samples (i.e., performance just as generalization began). For
this reason, the modeling results should be interpreted only qual-
itatively.

We fit the RB and II models to participants’ last 40 RB training
trials. The RB and II models fit best the performance of 23 and
three participants, respectively. For the 23 RB learners, the average
criterion point they chose along the X dimension was 47.0. The
average BIC score for fitting the data was 16.1 (95% of responses
explained by the modeling on average). These measures confirmed
that the modeling provided close fits to the observed data.

We also fit the models to participants’ first 40 RB generalization
trials. The RB and II models fit best the performance of 23 and
three participants, respectively. The average criterion point for the
23 RB learners was 49.6. The average BIC score for fitting the data
was 21.0 (96% of responses explained by the modeling on aver-
age). Our qualitative conclusion is that participants flawlessly
sustained their RB strategy as they entered generalization.

Regarding II performance, participants commonly choose ad-
ventitious rules even in II tasks for which a rule is nonoptimal.
This tendency was stronger here because the training and gener-
alization category distributions have less variability along the
major diagonal of the stimulus space (compare Figures 1 and 3) so
that dimensional rules can partition even the II categories fairly
well. In fact, for the last 40 trials of II training, the RB and II
models fit best the performance of 17 and nine participants, re-
spectively, with an average BIC score of 30.6 and with 87% of
responses explained by the modeling. Human rule-based learning
is quite cognitively insistent, intruding where it may not be adap-
tive. This insistence would seem to be another confirmation of
multiple-systems theory. The nine participants with diagonal de-
cision bounds provided a test of whether such bounds survive the
transition to generalization. They did not. The model fitting
showed that eight of these nine participants switched to an RB
strategy during the first 40 generalization trials. Only two of 26
participants produced responses that were best fit by diagonal
decision bounds during generalization. Our qualitative conclusion
is that there is minimal evidence for the successful extension of
diagonal decision strategies to untrained regions of the stimulus
space. Quantitatively, the models fit the generalization data of the
II participants with an average BIC score of 43.1 (81% of re-
sponses explained by the model on average). In fact, at general-
ization, humans apparently immediately adopted a dimensional
rule.

Experiment 1 replicated the general pattern of results when
humans perform RB and II tasks. It replicated the generalization
results in Casale et al. (2012). RB learners—through their perfor-
mance levels and consistent decision strategies—generalized cat-
egory rules faultlessly to new stimuli. II learners did not. They
suffered a drop in performance levels and often seized on nonop-
timal dimensional rules. These results grounded our methodology

as we evaluated whether nonhuman primates would produce the
same data pattern.

Experiment 2: Rhesus Macaques

Method

Subjects. Adult male rhesus macaques (Macaca mulatta)
Murph and Lou (21 years old) were tested. They had been trained
as described elsewhere (e.g., Washburn & Rumbaugh, 1992) to
respond to computer graphic stimuli by manipulating a joystick.
They had participated in previous computerized experiments (e.g.,
Smith et al., 2010; Smith, Coutinho, Church, & Beran, 2013;
Smith et al., 2008). The macaques were tested individually in their
home cages at the Language Research Center (Georgia State
University), with ad libitum access to the test apparatus, working
when they chose during long sessions. They had continuous access
to water, and worked for fruit-flavored primate pellets. They
received a daily diet of fruits and vegetables independent of their
efforts on the task, and thus they were not food deprived for the
purposes of this experiment.

Procedure. The stimuli, the category structures, the category
tasks, and the formal modeling were as described in the General
Method section. The macaques controlled a white cursor on the
screen with their joystick, moving it to make categorization re-
sponses. They also had to move this cursor (using appropriate
joystick guidance) to touch the stimulus as an observing response
that produced the response icons and allowed a categorization
response. It is obvious, but important to note, that macaques could
not be given instructions about the task. They had to discover
everything about the task from the trial-by-trial progression of
stimulus, response, and feedback. Therefore, the macaques faced a
heavier burden than humans in the process of category learning,
and especially, perhaps, in the process of learning explicit category
rules.

In the first phase of category training and generalization, Lou
completed 9,070 trials in training on the major-diagonal II task
(see Figure 3a). During these trials, we presented only Category A
and B trials from the lower stimulus distributions. Following a
session that ended with Lou completing 21 consecutive 100-trial
blocks with performance above 0.90, we moved him to general-
ization. Lou completed 12,061 trials. Now, we presented only
Category A and B trials sampled from the upper stimulus distri-
butions. We ended testing when Lou had just completed a session
containing 28 consecutive 100-trial blocks with performance 0.90
or above.

In the second phase of category training and generalization, Lou
completed 30,369 trials in training on the vertical RB task. In this
case, we reversed the Category A and B designations from those
shown in Figure 3b. This ensured that Lou would generalize poorly
if he tried to extend his diagonal decision bound to the new
category structure, and prompted a sharp and complete relearning
by him. We also made the pixel color light red, enhancing in
another way the newness of the task and the need for relearning by
Lou. Following a session that ended with Lou having completed 22
consecutive 100-trial blocks with performance 0.90 or above, we
moved him on to the generalization phase. Lou completed 6,298
trials. We ended testing when Lou had completed 21 consecutive
100-trial blocks with performance above 0.90.
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In the first phase of category training and generalization, Murph
completed 12,963 trials in training on the vertical RB task shown
in Figure 3b. Following a session that ended with 19 consecutive
100-trial blocks with performance above 0.90, we moved him on
to generalization. Murph completed 14,259 trials. We ended test-
ing when Murph had just completed a session containing 31
consecutive 100-trial blocks with accuracy above 0.90.

In the second phase of category training and generalization,
Murph completed 8,086 trials in training on the major-diagonal II
task. Here, too, we reversed the Category A and B designations
from those shown in Figure 3a and we recolored the stimulus
pixels. Following a session that ended 28 consecutive 100-trial
blocks with performance above 0.89, we moved him on to gener-
alization. Murph completed 5,915 trials. We ended testing when
Murph had just completed a session containing 19 consecutive
100-trial blocks with performance above 0.90.

Results: First Training Generalization Phase

Accuracy-based analyses: Training performance. Figures
5a and 5b, respectively, show the proportion correct achieved by
Lou and Murph in the II and RB tasks, with performance summa-
rized over 2,000 trials in 100-trial blocks. The break between 1,000
training trials and 1,000 generalization trials is indicated by the
vertical line at Block 0. We summed performance backward from
that point (Trials 1–100 before generalization, 101–200 before
generalization, etc.) or forward from that point (Trials 1–100 after
generalization, etc.). Lou’s and Murph’s proportions correct over
the last 1,000 training trials were 0.96 and 0.96, respectively. Thus,
their performance was equated over their last training trials. We
have generally found these animals to be comparable in their
performance on many tasks and excellent controls for one another.

Accuracy-based analyses: Transition to generalization.
Lou averaged 0.82 correct in his first 100 generalization trials
compared with 0.96 correct in his last 100 training trials. The
performance cost was substantial, 0.14, t(198) � 3.25, p � .002,
Cohen’s d � 0.23, 95% CI [0.09, 0.37].3 Lou’s performance
faltered, as did humans’ performance and to the same extent (0.14
vs. 0.17), in extending II category knowledge to untrained stimuli.

Murph averaged 0.93 in his first 100 generalization trials com-
pared with 0.94 in his last 100 training trials. The performance cost
was 0.01, t(198) � 0.29, p � .77, Cohen’s d � 0.02, 95% CI
[�0.12, 0.16].4 For Murph, as for humans, the generalization of
RB category knowledge to new stimuli was seamless.

Model-based analyses. Formal models also let us describe
the macaques’ decisional strategies at different phases. Perfor-
mance data from both monkeys in training and generalization
stages were fit to unidimensional (RB) and multidimensional
(II) models. We modeled Lou’s last 100 II training trials.
(Because macaques are less cognitively labile, it was safe to
model a larger sample of behavior.) Lou’s best-fitting diagonal
decision bound had an optimal slope of 1.01 and a near-optimal
placement in the space. The BIC score of 40.8, and the 96% of
responses accounted for by the model, indicated that he applied
this decisional strategy consistently so that the model fit his
performance closely.

We also modeled Lou’s first 100 II generalization trials. His
best-fitting diagonal decision bound had a slope of 1.26 (steeper
than optimal). Moreover, Lou was not able to apply this decision

strategy efficiently. The BIC score (104.2) for the modeling was
far higher than in training. The model only explained 82% of his
responses, not 96% as in training. He had not applied the decision
strategy well and so the model did not fit his performance well.

We also modeled Murph’s last 100 RB training trials. The
modeling indicated an RB decision strategy placed optimally at
49.1 along the x axis. The BIC score of 52.1 indicated a close
fit—the model explained 94% of Murph’s responses. Over the first
100 generalization trials, Murph’s rule boundary barely shifted to
50.8 on the x axis. The BIC score (56.7) and the percentage of
responses explained (93%) were also barely changed. These anal-
yses suggest that his use of the categorization rule survived intact
its generalization to novel, untrained stimulus contexts. Lou’s use
of his II decision boundary did not survive intact.

Results: Second Training Generalization Phase

Accuracy-based analyses: Training performance. Figures
6a and 6b show the proportion correct of Murph and Lou in the II
and the RB task with performance summarized over 2,000 trials in
100-trial blocks. Block 0 is the break between training and gen-
eralization (vertical line). Trial blocks were defined backward and
forward from that transition point, as already described. Murph’s
and Lou’s proportions correct over the last 1,000 training trials
were 0.95 and 0.96, respectively. Again these animals were
equated in training, representing the mutual controls they often are.

Accuracy-based analyses: Transition to generalization.
Murph averaged 0.82 correct in his first 100 generalization trials
compared with 0.95 correct in his last 100 training trials. The
performance loss was substantial, 0.13, t(198) � 2.94, p � .01,
Cohen’s d � 0.21, 95% CI [0.07, 0.35].5 Murph’s performance
faltered, as did humans’ performance, in extending II categoriza-
tion performance to untrained stimuli. Lou averaged 0.95 in his
first 100 generalization trials compared with 0.95 in his last 100
training trials.6 There was no cost to generalization. For Lou, as for
humans, the transition of RB category learning to new stimuli was
seamless.

Model-based analyses. As before, we fit performance data
from both monkeys in training and generalization stages to unidi-
mensional (RB) and multidimensional (II) models. We modeled
Murph’s last 100 II training trials. His best-fitting diagonal deci-
sion bound had an optimal slope of 0.63 and a near-optimal
placement in the space. The BIC score of 26.9, and the 97% of
responses accounted for by the model, indicated that he applied
this decisional strategy consistently so that the model fit his
performance closely.

We also modeled Murph’s first 100 II generalization trials. His
best-fitting diagonal decision bound had a slope of 0.73 (steeper
than optimal). Moreover, Murph did not apply his decision strat-

3 When trials from the last two training blocks were averaged and
included, results were comparable, t(198) � 3.14, p � .002, Cohen’s d �
0.04, 95% CI [�0.10, 0.18].

4 When trials from the last two training blocks were averaged and
included, results were comparable, t(198) � 1.03, p � .30, Cohen’s d �
0.07, 95% CI [�0.06, 0.21].

5 When trials from the last two training blocks were averaged and
included, results were comparable, t(198) � 3.42, p � .001, Cohen’s d �
0.24, 95% CI [0.10, 0.38].

6 Lou averaged 0.93 in his last 200 training trials.
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egy efficiently. The BIC score (104.2) was now far higher than in
training. And the model only explained 82% of his responses, not
97% as in training. He did not apply the decision strategy effi-
ciently and so the model did not fit his performance well.

We also modeled Lou’s last 100 RB training trials. The mod-
eling indicated a RB decision strategy placed optimally at 54.0
along the x axis. The BIC score of 52.9 indicated a close fit—the
model explained 95% of Lou’s responses. Over the first 100 RB
generalization trials, Lou’s best-fitting rule boundary barely
shifted to 46.2 on the x axis. The BIC score (59.4) and the
proportion of responses explained (94%) also barely changed.
Lou’s use of the categorization rule survived intact its generaliza-
tion to novel, untrained stimulus contexts. Murph’s use of his II
decision boundary did not survive intact.

Results: Overall Training Generalization

As with the humans, to confirm the interaction implied by the
differences in generalization across the tasks, we entered the
proportion correct in the last block of training and the first block

of generalization into a two-way ANOVA with categorization task
(RB, II) and test stage (training, generalization) as a within-subject
factors and monkey (Lou, Murph) as the between-subjects factor.
There was a significant main effect of task (RB, II), F(1, 198) �
9.29, p � .003, �p

2 � .045, with RB performance higher than II.
There was also a significant main effect of stage (training, gener-
alization), F(1, 198) � 12.50, p � .001, �p

2 � .06, with perfor-
mance at the end of training exceeding performance at the begin-
ning of generalization. The crucial Task � Stage interaction was
also significant, F(1, 198) � 12.26, p � .001, �p

2 � .06, confirming
the finding that the monkeys generalized better in the RB task than
in the II task. There were no significant main effects or interactions
with monkey (Fs � 1), reflecting the fact that both monkeys
showed the same pattern of results.

General Discussion

We used a generalization paradigm to ask whether humans and
macaques share aspects of a dimensional categorization utility that
produces category knowledge with some stimulus independence.

Figure 5. (a) The proportion of correct responses for the macaque Lou performing in the information-integration
task. Ten 100-trial training blocks extend back from the training–generalization horizon plotted at Block 0 (vertical
line) to Block �10. Ten 100-trial generalization blocks extend forward to Block 10. (b) The proportion of correct
responses for the macaque Murph performing in the rule-based task, depicted in the same way.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

330 SMITH ET AL.



Both species learned RB and II category tasks, then performance
shifted to a new area of stimulus space. II generalization was
impaired, consistent with the idea that II category knowledge is
yoked to the conditioning context of the training stimuli. RB
generalization was seamless, consistent with the idea that RB
category knowledge has independence from the training contexts.
Macaques share some aspects—generalizability, independence,
abstractness—of humans’ dimensional categorization. These find-
ings join those in Smith et al. (2010) to show similarities between
humans’ and macaques’ RB performance.

This does not mean that macaques’ dimensional categorization
is explicit, declarative, or identical to that in humans. Apparent
similarities could deserve different psychological interpretations
on different cognitive levels. The nature of the dimensional rule or
attentional principle underlying monkeys’ RB learning is the the-
oretical issue raised by the present findings.

One interpretation is that reinforcement in RB tasks can atten-
tionally shape the animal’s psychological space. In a size-rule task
(density information irrelevant), reinforcement might sharpen size
discrimination thresholds, stretching that axis, separating Category

A and B ellipses, easing discrimination and classification. Rein-
forcement might dull density discrimination thresholds, shrinking
that axis, moving generalization ellipses toward training ellipses,
easing generalization. Any low-level selective-attention mecha-
nism could accomplish this, absent an explicit or declarative di-
mensional rule. Thus, one need only grant macaques the basic
capacity to orient attention, adjusting psychological space adap-
tively—elastically.

Choosing this minimal interpretation would have striking theo-
retical implications. Pigeons apparently do not dissociate II and
RB tasks as capuchin monkeys, rhesus macaques, and humans do.
Figure 7a shows performance—from the beginning of train-
ing—by eight II-learning pigeons and eight RB-learning pigeons.
There is no RB advantage. The curves’ waviness arises because
pigeons were removed from the task at criterion, so still-learning
birds were graphed alone. Figure 7b shows performance backward
from the criterial block, aligning across birds the approach to
criterion. There is still no RB advantage. Rather, pigeons seem to
have performed two category tasks of the same character and
learnability. Smith et al. (2011) comprised two independent studies

Figure 6. (a) The proportion of correct responses for macaque Murph in the information-integration task. Ten
100-trial training blocks extend back from the training–generalization horizon plotted at Block 0 (vertical line)
to Block �10. Ten 100-trial generalization blocks extend forward to Block 10. (b) The proportion of correct
responses for the macaque Lou in the rule-based task, depicted in the same way.
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conducted in different countries but with perfect convergence.
R. G. Cook (personal communication, December 2014) has now
found this result for a third time.

If we ascribe monkeys’ II–RB dissociation to the most basic
selective-attention capacity, then we would conclude that pigeons
do not dissociate the tasks because they lack that capacity. We
would say that they lack a central attention-allocation ability, that
they are global/holistic processors, that they are nonanalytic cate-
gory learners. This would be a strong, interesting, and controver-
sial conclusion. But there is a general principle at work here.
Whatever is the minimum explanation that one puts in place to
grant macaques their II–RB dissociation, one would provisionally
deny that capacity to pigeons, and probably to many other verte-
brate lineages, too. In this literature, the choice for minimalism in
interpretation cuts two ways—quite sharply.

This choice could be correct. Pearce, Esber, George, and Hasel-
grove (2008) produced convergent findings that indicated a failure
of selective attention to dimensions by pigeons. This result led
them to question—as a matter of their own acute theoretical
disappointment—whether pigeons possess central attention-
allocation processes, which of course would be essential to any
category-learning system that could find generalizable dimen-
sional solutions to category tasks. Their findings and interpretation
converge with those in Smith et al. (2011).

In addition, if pigeons have a unitary categorization system that
does not distinguish II and RB tasks, then they—unlike pri-
mates—should show faltering generalization to untrained stimulus
contexts for both II and RB tasks. Our pilot research has suggested
that categorization by pigeons does falter in RB tasks on extension
to new regions of the stimulus space.

Our goal in noting the convergence between Smith et al. (2011)
and Pearce et al. (2008) is not to attack anything—certainly not
pigeons. Therefore, we state clearly that there is reason to question

the denial to pigeons of a basic selective-attention mechanism.
Pigeons have shown selective-attention effects in some studies
(e.g., Blough, 2012; Riley & Leith, 1976; Riley & Roitblat, 1978;
Sutherland & Mackintosh, 1971; Thomas, 1970; Zentall, 2005,
2012).

Yet the II–RB results stand at odds with these results: Because,
if pigeons have a basic selective-attention capacity, and if that
capacity powers macaques’ II–RB dissociation, then why is that
system not available to power pigeons’ II–RB dissociation. There
is another comparative principle at work here. We can grant
pigeons their basic selective-attention capacity, as many would
prefer, if we grant that macaques’ and humans’ II–RB dissociation
has an origin in some different or higher level dimensional prin-
ciple in categorization.

In fact, there is another level on which one could place the
attentional principle or dimensional rule that macaques bring to
RB tasks. Antzoulatos and Miller (2014) illustrated this theoretical
perspective. They simultaneously recorded from multiple elec-
trodes in two crucial learning centers—the dorsal striatum and
lateral prefrontal cortex (PFC). Striatal activity was a strong pre-
dictor of performance governed by specific stimulus response (SR)
associations, as would account for II performance across species in
many studies. PFC was the strong predictor of performance gov-
erned by true classification that transcended SR association, a
transcendence consistent with a higher-level dimensional principle
at work in RB tasks. Antzoulatos and Miller concluded that the
striatum and PFC, respectively, play greater roles in SR associa-
tion and category abstraction. Their work provides a possible
neuroscience perspective on the distinction we are exploring be-
haviorally in humans and macaques. It is consonant with ideas
about the striatum’s role in learning (e.g., Arbuthnott, Ingham, &
Wickens, 2000; Mishkin, Malamut, & Bachevalier, 1984; Rolls,
1994; Wickens, 1993), with the neuroscience underlying II–RB

Figure 7. Pigeons performing information-integration (II) and rule-based (RB) tasks. (a) The proportion of
correct responses in each session from the onset of learning forward for eight II-learning pigeons (open triangles)
and eight RB-learning pigeons (filled squares). (b) The proportion of correct responses in each session from the
criterial block backward for eight II-learning pigeons and eight RB-learning pigeons. “Implicit and Explicit
Categorization: A Tale of Four Species,” by Smith, Berg, et al., 2012, Neuroscience and Biobehavioral Reviews,
36, p. 2364. Adapted with permission from Elsevier.
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research (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Maddox & Ashby, 2004), and with the literature on explicit
executive cognition (e.g., Alexander, DeLong, & Strick, 1986;
Elliott & Dolan, 1998; Goldman-Rakic, 1987; Kolb & Whishaw,
1990; Posner & Petersen, 1990; Rao et al., 1997; Robinson,
Heaton, Lehman, & Stilson, 1980). It is consonant with the theo-
retical idea that regularities in a categorization task, as adaptive
behavior establishes itself, engender cortical loops that focus at-
tention on the perceptual feature that distinguishes the categories.
This would create a category “rule” with some abstractness and
stimulus independence but without language and symbolic detach-
ment. Pigeons might naturally not have homologs of these cortical
rule loops. But, on this view, they would retain a basic selective-
attention capability that would express itself in some tasks, but
would not express itself in an II–RB dissociation.

This theoretical account explains a great deal. It also has im-
portant implications for comparative psychology. It would allow
for the possibility of dimensional rules in categorization even for
species that are not verbal or symbolic. It would speak sharply
against the frequent and harmful conflation among rules, hypoth-
eses, and verbalization in the human literature—that is even some-
times used to question whether animals can represent rules and
hypotheses. Of course, there might be nonverbal representational
codes by which the brain can learn and generalize category prin-
ciples and dimensional regularities in tasks.

This interpretation would also suggest something important
about the emergence of humans’ explicit declarative system for
rule learning. That emergence could have been gradual, in stages,
from central attention mechanisms, to sustained control loops
organizing dimensional behavior, to category rules in working
memory, to declarative rules in reportable consciousness. Our
overarching goal is to foster theoretical attention toward this
progression or hierarchy of attentional–dimensional effects that
could represent different processes and even different levels of
cognition and awareness.

We stress that we have not shown fully abstract category rules
in macaques. We continued trial-by-trial reinforcement for the
humans and monkeys into generalization, so their ongoing learning
was supported throughout. We did not test whether they would
have available a category rule that could extend to new stimuli
when direct reinforcement was never provided to the new stimuli.
This would be a stronger test of abstractness and generalizability,
and we do not know whether macaques could pass it. We also did
not test whether macaques’ rules are held in working memory and
awareness, or whether they are declarative—that is, reportable to
external observers through some kind of dimensional report icon.
But, on both fronts, we believe the II–RB approach is still con-
structive and productive, bringing one closer to answering these
empirical questions by making it clear that one should ask these
empirical questions.

It is an intriguing evolutionary question why the psychological
privilege for dimensional rules arose in categorization systems, as
happened at least in primates. There must have been advantages in
attentional focusing, dimensional analysis, and guiding perfor-
mance principles with stimulus independence. One can see how
these independent task principles could have been a useful alter-
native learning system that also could have allowed the eventual
use of rules, hypotheses, and finally their declarative–
communicative representation. Thus, we believe that the emer-

gence of the dimensional-analytic categorization system may have
been an important milestone in cognitive evolution.

We also believe that comparative research in this area has the
potential to foster a useful dialog with neuroscience research, as
well illustrated by the research of Antzoulatos and Miller (2014).
For it will be productive to compare macaques’ and humans’
categorization competence and limits—especially for dimensional
rules—and to relate these to the differential development of brain
systems that serve category learning in different species. This
could illuminate the structure of these capacities in human cogni-
tion, their earliest (nonverbal) expression in human development,
and the special affordances of human language, all with implica-
tions for neuropsychology and cognitive development.

References

Ahn, W. K., & Medin, D. L. (1992). A two-stage model of category
construction. Cognitive Science, 16, 81–121. http://dx.doi.org/10.1207/
s15516709cog1601_3

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organi-
zation of functionally segregated circuits linking basal ganglia and
cortex. Annual Review of Neuroscience, 9, 357–381. http://dx.doi.org/
10.1146/annurev.ne.09.030186.002041

Antzoulatos, E. G., & Miller, E. K. (2014). Increases in functional con-
nectivity between prefrontal cortex and striatum during category learn-
ing. Neuron, 83, 216–225. http://dx.doi.org/10.1016/j.neuron.2014.05
.005

Arbuthnott, G. W., Ingham, C. A., & Wickens, J. R. (2000). Dopamine and
synaptic plasticity in the neostriatum. Journal of Anatomy, 196, 587–
596. http://dx.doi.org/10.1046/j.1469-7580.2000.19640587.x

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M.
(1998). A neuropsychological theory of multiple systems in category
learning. Psychological Review, 105, 442– 481. http://dx.doi.org/
10.1037/0033-295X.105.3.442

Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category
learning. Trends in Cognitive Sciences, 5, 204–210. http://dx.doi.org/
10.1016/S1364-6613(00)01624-7

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and
categorization of multidimensional stimuli. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, 33–53. http://dx.doi
.org/10.1037/0278-7393.14.1.33

Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0.
Annals of the New York Academy of Sciences, 1224, 147–161. http://dx
.doi.org/10.1111/j.1749-6632.2010.05874.x

Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus
feedback training in rule-based and information-integration category
learning. Memory & Cognition, 30, 666–677. http://dx.doi.org/10.3758/
BF03196423

Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the dominance of
unidimensional rules in unsupervised categorization. Perception & Psy-
chophysics, 61, 1178–1199. http://dx.doi.org/10.3758/BF03207622

Ashby, F. G., & Valentin, V. V. (2005). Multiple systems of perceptual
category learning: Theory and cognitive tests. In H. Cohen & C. Lefeb-
vre (Eds.), Handbook of categorization in cognitive science (pp. 547–
572). New York, NY: Elsevier. http://dx.doi.org/10.1016/B978-
008044612-7/50080-9

Ashby, F. G., & Waldron, E. M. (1999). On the nature of implicit
categorization. Psychonomic Bulletin & Review, 6, 363–378. http://dx
.doi.org/10.3758/BF03210826

Blough, D. S. (2012). Reaction-time explorations of visual perception,
attention, and decision in pigeons. In T. R. Zentall & E. A. Wasserman
(Eds.), The Oxford handbook of comparative cognition (pp. 674–690).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

333DIMENSIONAL CATEGORIZATION BY HUMANS AND PRIMATES

http://dx.doi.org/10.1207/s15516709cog1601_3
http://dx.doi.org/10.1207/s15516709cog1601_3
http://dx.doi.org/10.1146/annurev.ne.09.030186.002041
http://dx.doi.org/10.1146/annurev.ne.09.030186.002041
http://dx.doi.org/10.1016/j.neuron.2014.05.005
http://dx.doi.org/10.1016/j.neuron.2014.05.005
http://dx.doi.org/10.1046/j.1469-7580.2000.19640587.x
http://dx.doi.org/10.1037/0033-295X.105.3.442
http://dx.doi.org/10.1037/0033-295X.105.3.442
http://dx.doi.org/10.1016/S1364-6613%2800%2901624-7
http://dx.doi.org/10.1016/S1364-6613%2800%2901624-7
http://dx.doi.org/10.1037/0278-7393.14.1.33
http://dx.doi.org/10.1037/0278-7393.14.1.33
http://dx.doi.org/10.1111/j.1749-6632.2010.05874.x
http://dx.doi.org/10.1111/j.1749-6632.2010.05874.x
http://dx.doi.org/10.3758/BF03196423
http://dx.doi.org/10.3758/BF03196423
http://dx.doi.org/10.3758/BF03207622
http://dx.doi.org/10.1016/B978-008044612-7/50080-9
http://dx.doi.org/10.1016/B978-008044612-7/50080-9
http://dx.doi.org/10.3758/BF03210826
http://dx.doi.org/10.3758/BF03210826


New York, NY: Oxford University Press. http://dx.doi.org/10.1093/
oxfordhb/9780195392661.013.0006

Brooks, L. R. (1978). Nonanalytic concept formation and memory for
instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categori-
zation (pp. 169–211). Hillsdale, NJ: Erlbaum.

Casale, M. B., Roeder, J. L., & Ashby, F. G. (2012). Analogical transfer in
perceptual categorization. Memory & Cognition, 40, 434–449. http://dx
.doi.org/10.3758/s13421-011-0154-4

Cerella, J. (1979). Visual classes and natural categories in the pigeon.
Journal of Experimental Psychology: Human Perception and Perfor-
mance, 5, 68–77. http://dx.doi.org/10.1037/0096-1523.5.1.68

Cook, R. G., & Smith, J. D. (2006). Stages of abstraction and exemplar
memorization in pigeon category learning. Psychological Science, 17,
1059–1067. http://dx.doi.org/10.1111/j.1467-9280.2006.01833.x

Dunn, J. C., Newell, B. R., & Kalish, M. L. (2012). The effect of feedback
delay and feedback type on perceptual category learning: The limits of
multiple systems. Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 38, 840–859. http://dx.doi.org/10.1037/a0027867

Elliott, R., & Dolan, R. J. (1998). Activation of different anterior cingulate
foci in association with hypothesis testing and response selection. Neu-
roImage, 8, 17–29. http://dx.doi.org/10.1006/nimg.1998.0344

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in
category learning. Journal of Experimental Psychology: General, 127,
107–140. http://dx.doi.org/10.1037/0096-3445.127.2.107

Feldman, J. (2000). Minimization of Boolean complexity in human concept
learning. Nature, 407, 630–633. http://dx.doi.org/10.1038/35036586

Fukunaga, K. (1972). Introduction to statistical pattern recognition. New
York, NY: Academic Press.

Goldman-Rakic, P. S. (1987). Circuitry of the prefrontal cortex and the
regulation of behavior by representational knowledge. In V. Mountcastle
(Ed.), Handbook of physiology (Vol. 5, pp. 373–417). Bethesda, MD:
American Physiological Society.

Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in
pigeons. Journal of Experimental Psychology: Animal Behavior Pro-
cesses, 2, 285–302. http://dx.doi.org/10.1037/0097-7403.2.4.285

Homa, D., Sterling, S., & Trepel, L. (1981). Limitations of exemplar-based
generalization and the abstraction of categorical information. Journal of
Experimental Psychology: Human Learning and Memory, 7, 418–439.
http://dx.doi.org/10.1037/0278-7393.7.6.418

Jitsumori, M. (1994). Artificial polymorphous concepts in humans and
nonhumans. In S. C. Hayes, L. J. Hayes, M. Sato, & K. Ono (Eds.),
Behavior analysis of language and cognition (pp. 91–106). Oakland,
CA: Context Press.

Knowlton, B. J., & Squire, L. R. (1993). The learning of categories:
Parallel brain systems for item memory and category knowledge. Sci-
ence, 262, 1747–1749. http://dx.doi.org/10.1126/science.8259522

Kolb, B., & Whishaw, I. Q. (1990). Fundamentals of human neuropsy-
chology (3rd ed.). New York, NY: Freeman.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist
model of category learning. Psychological Review, 99, 22–44. http://dx
.doi.org/10.1037/0033-295X.99.1.22

Lea, S. E. G., & Ryan, C. M. E. (1990). Unnatural concepts and the theory
of concept discrimination in birds. In M. L. Commons, R. J. Herrnstein,
S. M. Kosslyn, & M. B. Mumford (Eds.), Behavioral approaches to
pattern recognition and concept formation: Quantitative analyses of
behavior (Vol. 8, pp. 165–185). Hillsdale, NJ: Erlbaum.

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and
exemplar models of categorization. Perception & Psychophysics, 53,
49–70. http://dx.doi.org/10.3758/BF03211715

Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and
procedural-learning based systems of perceptual category learning. Be-
havioural Processes, 66, 309–332. http://dx.doi.org/10.1016/j.beproc
.2004.03.011

Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback
effects on rule-based and information-integration category learning.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 29, 650–662. http://dx.doi.org/10.1037/0278-7393.29.4.650

Maddox, W. T., & Ing, A. D. (2005). Delayed feedback disrupts the
procedural-learning system but not the hypothesis-testing system in
perceptual category learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 31, 100 –107. http://dx.doi.org/
10.1037/0278-7393.31.1.100

Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Family
resemblance, conceptual cohesiveness, and category construction. Cog-
nitive Psychology, 19, 242–279. http://dx.doi.org/10.1016/0010-
0285(87)90012-0

Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits:
Two neural systems. In G. Lynch, J. L. McGaugh, & N. M. Weinberger
(Eds.), Neurobiology of learning and memory (pp. 65–77). New York,
NY: Guilford Press.

Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT
Press.

Newell, B. R., Dunn, J. C., & Kalish, M. (2010). The dimensionality of
perceptual category learning: A state-trace analysis. Memory & Cogni-
tion, 38, 563–581. http://dx.doi.org/10.3758/MC.38.5.563

Newell, B. R., Moore, C. P., Wills, A. J., & Milton, F. (2013). Reinstating
the frontal lobes? Having more time to think improves implicit percep-
tual categorization: A comment on Filoteo, Lauritzen, and Maddox
(2010). Psychological Science, 24, 386–389. http://dx.doi.org/10.1177/
0956797612457387

Nosofsky, R. M. (1987). Attention and learning processes in the identifi-
cation and categorization of integral stimuli. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 13, 87–108. http://dx
.doi.org/10.1037/0278-7393.13.1.87

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-
exception model of classification learning. Psychological Review, 101,
53–79. http://dx.doi.org/10.1037/0033-295X.101.1.53

Nosofsky, R. M., Stanton, R. D., & Zaki, S. R. (2005). Procedural inter-
ference in perceptual classification: Implicit learning or cognitive com-
plexity? Memory & Cognition, 33, 1256 –1271. http://dx.doi.org/
10.3758/BF03193227

Pearce, J. M., Esber, G. R., George, D. N., & Haselgrove, M. (2008). The
nature of discrimination learning in pigeons. Learning & Behavior, 36,
188–199. http://dx.doi.org/10.3758/LB.36.3.188

Posner, M. I., & Petersen, S. E. (1990). The attention system of the human
brain. Annual Review of Neuroscience, 13, 25–42. http://dx.doi.org/
10.1146/annurev.ne.13.030190.000325

Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J.,
Cunningham, J. M., . . . Binder, J. R. (1997). Functional MRI evidence
for subcortical participation in conceptual reasoning skills. NeuroRe-
port: An International Journal for the Rapid Communication of Re-
search in Neuroscience, 8, 1987–1993. http://dx.doi.org/10.1097/
00001756-199705260-00038

Regehr, G., & Brooks, L. R. (1995). Category organization in free classi-
fication: The organizing effect of an array of stimuli. Journal of Exper-
imental Psychology: Learning, Memory, and Cognition, 21, 347–363.
http://dx.doi.org/10.1037/0278-7393.21.2.347

Riley, D. A., & Leith, C. R. (1976). Multidimensional psychophysics and
selective attention in animals. Psychological Bulletin, 83, 138–160.
http://dx.doi.org/10.1037/0033-2909.83.1.138

Riley, D. A., & Roitblat, H. L. (1978). Selective attention and related
cognitive processes in pigeons. In S. H. Hulse, H. Fowler, & W. K.
Honig (Eds.), Cognitive processes in animal behavior (pp. 249–276).
Hillsdale, NJ: Erlbaum.

Robinson, A. L., Heaton, R. K., Lehman, R. A. W., & Stilson, D. W.
(1980). The utility of the Wisconsin Card Sorting Test in detecting and

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

334 SMITH ET AL.

http://dx.doi.org/10.1093/oxfordhb/9780195392661.013.0006
http://dx.doi.org/10.1093/oxfordhb/9780195392661.013.0006
http://dx.doi.org/10.3758/s13421-011-0154-4
http://dx.doi.org/10.3758/s13421-011-0154-4
http://dx.doi.org/10.1037/0096-1523.5.1.68
http://dx.doi.org/10.1111/j.1467-9280.2006.01833.x
http://dx.doi.org/10.1037/a0027867
http://dx.doi.org/10.1006/nimg.1998.0344
http://dx.doi.org/10.1037/0096-3445.127.2.107
http://dx.doi.org/10.1038/35036586
http://dx.doi.org/10.1037/0097-7403.2.4.285
http://dx.doi.org/10.1037/0278-7393.7.6.418
http://dx.doi.org/10.1126/science.8259522
http://dx.doi.org/10.1037/0033-295X.99.1.22
http://dx.doi.org/10.1037/0033-295X.99.1.22
http://dx.doi.org/10.3758/BF03211715
http://dx.doi.org/10.1016/j.beproc.2004.03.011
http://dx.doi.org/10.1016/j.beproc.2004.03.011
http://dx.doi.org/10.1037/0278-7393.29.4.650
http://dx.doi.org/10.1037/0278-7393.31.1.100
http://dx.doi.org/10.1037/0278-7393.31.1.100
http://dx.doi.org/10.1016/0010-0285%2887%2990012-0
http://dx.doi.org/10.1016/0010-0285%2887%2990012-0
http://dx.doi.org/10.3758/MC.38.5.563
http://dx.doi.org/10.1177/0956797612457387
http://dx.doi.org/10.1177/0956797612457387
http://dx.doi.org/10.1037/0278-7393.13.1.87
http://dx.doi.org/10.1037/0278-7393.13.1.87
http://dx.doi.org/10.1037/0033-295X.101.1.53
http://dx.doi.org/10.3758/BF03193227
http://dx.doi.org/10.3758/BF03193227
http://dx.doi.org/10.3758/LB.36.3.188
http://dx.doi.org/10.1146/annurev.ne.13.030190.000325
http://dx.doi.org/10.1146/annurev.ne.13.030190.000325
http://dx.doi.org/10.1097/00001756-199705260-00038
http://dx.doi.org/10.1097/00001756-199705260-00038
http://dx.doi.org/10.1037/0278-7393.21.2.347
http://dx.doi.org/10.1037/0033-2909.83.1.138


localizing frontal lobe lesions. Journal of Consulting and Clinical Psy-
chology, 48, 605–614. http://dx.doi.org/10.1037/0022-006X.48.5.605

Rolls, E. T. (1994). Neurophysiology and cognitive functions of the stria-
tum. Revue Neurologique, 150, 648–660.

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the
internal structure of categories. Cognitive Psychology, 7, 573–605.
http://dx.doi.org/10.1016/0010-0285(75)90024-9

Rosseel, Y. (2002). Mixture models of categorization. Journal of Mathe-
matical Psychology, 46, 178–210. http://dx.doi.org/10.1006/jmps.2001
.1379

Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics, 6, 461–464. http://dx.doi.org/10.1214/aos/1176344136

Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and
memorization of classifications. Psychological Monographs: General
and Applied, 75, 1–42. http://dx.doi.org/10.1037/h0093825

Smith, J. D., Ashby, F. G., Berg, M. E., Murphy, M. S., Spiering, B., Cook,
R. G., & Grace, R. C. (2011). Pigeons’ categorization may be exclu-
sively nonanalytic. Psychonomic Bulletin & Review, 18, 414–421.
http://dx.doi.org/10.3758/s13423-010-0047-8

Smith, J. D., Beran, M. J., Crossley, M. J., Boomer, J., & Ashby, F. G.
(2010). Implicit and explicit category learning by macaques (Macaca
mulatta) and humans (Homo sapiens). Journal of Experimental Psychol-
ogy: Animal Behavior Processes, 36, 54–65. http://dx.doi.org/10.1037/
a0015892

Smith, J. D., Berg, M. E., Cook, R. G., Murphy, M. S., Crossley, M. J.,
Boomer, J., . . . Grace, R. C. (2012). Implicit and explicit categorization:
A tale of four species. Neuroscience and Biobehavioral Reviews, 36,
2355–2369. http://dx.doi.org/10.1016/j.neubiorev.2012.09.003

Smith, J. D., Boomer, J., Zakrzewski, A. C., Roeder, J. L., Church, B. A.,
& Ashby, F. G. (2014). Deferred feedback sharply dissociates implicit
and explicit category learning. Psychological Science, 25, 447–457.
http://dx.doi.org/10.1177/0956797613509112

Smith, J. D., Coutinho, M. V. C., Church, B. A., & Beran, M. J. (2013).
Executive-attentional uncertainty responses by rhesus macaques
(Macaca mulatta). Journal of Experimental Psychology: General, 142,
458–475. http://dx.doi.org/10.1037/a0029601

Smith, J. D., Crossley, M. J., Boomer, J., Church, B. A., Beran, M. J., &
Ashby, F. G. (2012). Implicit and explicit category learning by capuchin
monkeys (Cebus apella). Journal of Comparative Psychology, 126,
294–304. http://dx.doi.org/10.1037/a0026031

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early
epochs of category learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 24, 1411–1436. http://dx.doi.org/
10.1037/0278-7393.24.6.1411

Smith, J. D., Minda, J. P., & Washburn, D. A. (2004). Category learning in
rhesus monkeys: A study of the Shepard, Hovland, and Jenkins (1961)
tasks. Journal of Experimental Psychology: General, 133, 398–414.

Smith, J. D., Redford, J. S., & Haas, S. M. (2008). Prototype abstraction by
monkeys (Macaca mulatta). Journal of Experimental Psychology: Gen-
eral, 137, 390–401. http://dx.doi.org/10.1037/0096-3445.137.2.390

Stanton, R. D., & Nosofsky, R. M. (2007). Feedback interference and
dissociations of classification: Evidence against the multiple-learning-
systems hypothesis. Memory & Cognition, 35, 1747–1758. http://dx.doi
.org/10.3758/BF03193507

Sutherland, N. S., & Mackintosh, N. J. (1971). Mechanisms of animal
discrimination learning. New York, NY: Academic Press.

Thomas, D. R. (1970). Stimulus selection, attention, and related matters. In
J. H. Reynierse (Ed.), Current issues in animal learning (pp. 311–356).
Lincoln, NE: University of Nebraska Press.

Vauclair, J. (2002). Categorization and conceptual behavior in nonhuman
primates. In M. Bekoff, C. Allen, & G. M. Burghardt (Eds.), The
cognitive animal: Empirical and theoretical perspectives on animal
cognition (pp. 239–245). Cambridge, MA: MIT Press.

Washburn, D. A., & Rumbaugh, D. M. (1992). Testing primates with
joystick-based automated apparatus: Lessons from the Language Re-
search Center’s Computerized Test System. Behavior Research Meth-
ods, Instruments & Computers, 24, 157–164. http://dx.doi.org/10.3758/
BF03203490

Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual
behavior in pigeons: Categories, subcategories, and pseudocategories.
Journal of Experimental Psychology: Animal Behavior Processes, 14,
235–246. http://dx.doi.org/10.1037/0097-7403.14.3.235

Wickens, J. (1993). A theory of the striatum. New York, NY: Pergamon
Press.

Zentall, T. R. (2005). Selective and divided attention in animals. Behav-
ioural Processes, 69, 1–15. http://dx.doi.org/10.1016/j.beproc.2005.01
.004

Zentall, T. R. (2012). Selective and divided attention in birds. In O. F.
Lazareva, T. Shimizu, & E. A. Wasserman (Eds.), How animals see the
world: Comparative behavior, biology, and evolution of vision (pp.
351–369). New York, NY: Oxford University Press. http://dx.doi.org/
10.1093/acprof:oso/9780195334654.003.0020

Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. R., &
Rattermann, M. J. (2008). Concept learning in animals. Comparative
Cognition & Behavior Reviews, 3, 13–45. http://dx.doi.org/10.3819/ccbr
.2008.30002

Received February 27, 2015
Revision received May 12, 2015

Accepted May 13, 2015 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

335DIMENSIONAL CATEGORIZATION BY HUMANS AND PRIMATES

http://dx.doi.org/10.1037/0022-006X.48.5.605
http://dx.doi.org/10.1016/0010-0285%2875%2990024-9
http://dx.doi.org/10.1006/jmps.2001.1379
http://dx.doi.org/10.1006/jmps.2001.1379
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1037/h0093825
http://dx.doi.org/10.3758/s13423-010-0047-8
http://dx.doi.org/10.1037/a0015892
http://dx.doi.org/10.1037/a0015892
http://dx.doi.org/10.1016/j.neubiorev.2012.09.003
http://dx.doi.org/10.1177/0956797613509112
http://dx.doi.org/10.1037/a0029601
http://dx.doi.org/10.1037/a0026031
http://dx.doi.org/10.1037/0278-7393.24.6.1411
http://dx.doi.org/10.1037/0278-7393.24.6.1411
http://dx.doi.org/10.1037/0096-3445.137.2.390
http://dx.doi.org/10.3758/BF03193507
http://dx.doi.org/10.3758/BF03193507
http://dx.doi.org/10.3758/BF03203490
http://dx.doi.org/10.3758/BF03203490
http://dx.doi.org/10.1037/0097-7403.14.3.235
http://dx.doi.org/10.1016/j.beproc.2005.01.004
http://dx.doi.org/10.1016/j.beproc.2005.01.004
http://dx.doi.org/10.1093/acprof:oso/9780195334654.003.0020
http://dx.doi.org/10.1093/acprof:oso/9780195334654.003.0020
http://dx.doi.org/10.3819/ccbr.2008.30002
http://dx.doi.org/10.3819/ccbr.2008.30002

	Generalization of Category Knowledge and Dimensional Categorization in Humans (Homo sapiens) and ...)
	General Method
	Stimuli
	Category Structures
	Formal Modeling
	Hypotheses

	Experiment 1: Humans
	Method
	Participants
	Procedure
	Categorization trials
	Instructions

	Results
	Accuracy-based analyses: Learning
	Accuracy-based analyses: Transition to generalization
	Model-based analyses


	Experiment 2: Rhesus Macaques
	Method
	Subjects
	Procedure

	Results: First Training Generalization Phase
	Accuracy-based analyses: Training performance
	Accuracy-based analyses: Transition to generalization
	Model-based analyses

	Results: Second Training Generalization Phase
	Accuracy-based analyses: Training performance
	Accuracy-based analyses: Transition to generalization
	Model-based analyses

	Results: Overall Training Generalization

	General Discussion
	References


