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Abstract Perceptron models have been used extensively to
model perceptual learning and the effects of discrimination
training on generalization, as well as to explore natural
classification mechanisms. Here, we assess the ability of
existing models to account for the time course of generaliza-
tion shifts that occur when individuals learn to distinguish
sounds. A set of simulations demonstrates that commonly
used single-layer and multilayer perceptron networks do not
predict transitory shifts in generalization over the course of
training but that such dynamics can be accounted for when the
output functions of these networks are modified to mimic the
properties of cortical tuning curves. The simulations further
suggest that prudent selection of stimuli and training criteria
can allow for more precise predictions of learning-related
shifts in generalization gradients in behavioral experiments. In
particular, the simulations predict that individuals will show
maximal peak shift after different numbers of trials, that easier
contrasts will lead to slower development of shifted peaks,
and that whether generalization shifts persist or dissipate will
depend on which stimulus dimensions individuals use to
distinguish stimuli and how those dimensions are neurally
encoded.
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Similarity

When an organism learns that a stimulus results in some
consequence, it will often generalize that learning to similar
novel stimuli (Shepard, 1987). For instance, Watson and
Raynor (1920) famously demonstrated, in experiments with
Little Albert, that fear associated with a white rat can
generalize to other stimuli, such as a rabbit, a fur coat, or
even a piece of cotton. Numerous theoretical efforts have
focused on explaining and predicting generalization pat-
terns, with varying degrees of success (for a review, see
Ghirlanda & Enquist, 2003; Thomas, 1993). Computational
models of discrimination learning, in particular, have
proven to be adept at simulating many of the empirically
observed generalization patterns (Ghirlanda & Enquist,
1998, 2006; Guillette et al., 2010; Livesey, Pearson, &
McLaren, 2005; Saksida, 1999; Shepard, 1990; Staddon &
Reid, 1990; Suret & McLaren, 2002; Thomas, 1993). Such
models are becoming increasingly useful tools for generat-
ing hypotheses about the mechanisms and cues that
participants use during learning and generalization. In the
present study, we assessed the ability of a neural network
model of discrimination learning and generalization to
account for recent observations of learning-related shifts
in generalization observed during an auditory learning task.

A phenomenon commonly observed after discrimination
learning is that the highest levels of responding may occur
for stimuli other than those experienced during training.
Generally, a peak shift results when an individual is trained
to respond to one stimulus (S+) and not to some other
stimulus (S−) that varies along a common dimension. When
generalization is measured after training, responding is
strongest not to the trained S+, but to a stimulus that is
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shifted along the dimension even further from S−. In a
classic example of this, Hanson (1959) trained pigeons to
peck a key when presented with a 560-nm light (S+), but
not when presented with a 570-nm light (S−). During
generalization tests, pigeons responded most strongly to
wavelengths other than 560 nm (such as 540 nm) that
were farther along the continuum from the trained S−,
570 nm light. A similar phenomenon (area shift) is seen
when a generalization gradient shows a peak at the S+ but
an asymmetry in responding to stimuli on either side of
the S+, such that stimuli on the side away from S− are
responded to more frequently. Such learning-related shifts
have been well documented experimentally (Baron, 1973;
Bizo & McMahon, 2007; Cheng, Spetch, & Johnston,
1997; Derenne, 2010; Galizio & Baron, 1979; Guillette et
al., 2010; Hanson, 1959; Landau, 1968; Lewis &
Johnston, 1999; Moye & Thomas, 1982; Newlin, Rodgers,
& Thomas, 1979; Nicholson & Gray, 1972; Purtle, 1973;
Rowe & Skelhorn, 2004; Spetch, Cheng, & Clifford,
2004; Terrace, 1966; Thomas, Mood, Morrison, &
Wiertelak, 1991; Verzijden, Etman, van Heijningen, van
der Linden, & ten Cate, 2007; Wills & Mackintosh, 1998;
Wisniewski, Church, & Mercado, 2009, 2010) and have
been replicated using artificial neural networks (Ghirlanda
& Enquist, 1998, 2006; Guillette et al., 2010; Livesey et
al., 2005; Saksida, 1999; Suret & McLaren, 2002).

Most of the experimental studies of learning-related
shifts have focused on the presence, size, or generality of
the effects. For instance, several studies have shown that
how far a peak in generalization shifts after training
depends on the similarity of the stimuli that the subject
initially learned to discriminate (Baron, 1973; Ghirlanda &
Enquist, 1998; Hanson, 1959; Purtle, 1973; Thomas et al.,
1991). Typically, the more similar the stimuli being
discriminated are, the further the learner will shift (Baron,
1973; Ghirlanda & Enquist, 1998; Hanson, 1959; Spence,
1937). Shifts occur not only along simple, single dimensions
like wavelength (Hanson, 1959) and sine wave frequency
(Baron, 1973), but also along more complex acoustic
(Guillette et al., 2010; Verzijden et al., 2007; Wisniewski et
al., 2009, 2010), and visual (Derenne, 2010; Livesey et al.,
2005; Spetch et al., 2004; Suret & McLaren, 2002; Wills &
Mackintosh, 1998) dimensions. The ubiquitous nature of
learning-related shifts have made it possible to use the effects
to identify natural dimensions along which stimuli vary
(Guillette et al., 2010; Rowe & Skelhorn, 2004). For instance,
Guillette et al. used the peak shift effect as a way to identify a
continuum along which chickadees discriminated notes that
make up their species’ call and were also able to use similar
generalization shifts in an artificial neural network to identify
the acoustic features that defined that continuum.

Most theories of discrimination learning’s impact on
generalization have focused on explaining the basic experi-

mental effects. For example, several different associative
learning theories (Blough, 1975; McLaren & Mackintosh,
2002; Saksida, 1999; Spence, 1937) adequately explain the
direction of shift and the changes to the size of the effect that
result from variations in stimulus similarity. Computational
models have been used to test how well conflicting
associative theories explain peak shift and related general-
ization phenomena under different conditions (Ghirlanda &
Enquist, 1998; Livesey et al., 2005; Saksida, 1999), to
generate new hypotheses about how stimuli may be
represented (Ghirlanda & Enquist, 1998; Livesey et al.,
2005; Suret & McLaren, 2002; Tijsseling & Gluck, 2002),
and to determine what aspects of stimuli may be given the
most associative weight (Guillette et al., 2010).

Although there has been much work exploring the basic
predictions of current theories regarding peak shift, rela-
tively few studies, experimental or theoretical, have looked
at the dynamics of generalization over time. A few studies
have shown that extinction can occur during testing, such
that shifts in generalization dissipate as more nondifferen-
tially reinforced testing trials are experienced (Cheng et al.,
1997; Purtle, 1973). For instance, pigeons that exhibit a
strong peak shift in the first block of testing show a
reduction in the strength of that shift in the following test
blocks (Cheng et al., 1997). Other studies have shown that
both in humans (Wisniewski et al., 2009) and in nonhu-
mans (Moye & Thomas, 1982), peak shift is stable over
time and lasts at least 24 h post-discrimination-training.
Recently, in an effort to more fully characterize how
learning-related shifts change over the course of experience,
Wisniewski et al. (2010) trained humans for 60, 100, 140,
180, 220, or 260 trials on a task requiring the discrimination
of two complex sounds that varied in their rate of periodic
frequency modulation. Participants who were trained with
the fewest trials (60 or 100) or the most trials (220 or 260)
did not show a peak shift effect. However, participants who
were trained with an intermediate number of trials (140 or
180) did exhibit shifts. These results suggest that in at least
some training conditions, peak shift may occur only at
intermediate levels of learning.

The dynamics of generalization over the course of
learning have been explored in past computer simulations
of discrimination learning. For example, the shape of
generalization gradients produced by connectionist net-
works change from being Gaussian to exponential as more
training iterations are experienced (Shepard, 1990; Staddon
& Reid, 1990). However, simulations investigating how
learning-induced generalization shifts vary over different
amounts of training are lacking. One study found that a
multilayer connectionist model trained to recognize faces
along a continuum showed a gradually emerging shift in
generalization such that exaggerations of trained faces were
recognized more easily than the original faces (Tanaka &
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Simon, 1996). With extensive training, however, this
advantage disappeared. Nevertheless, the network contin-
ued to respond to novel faces falling along the continuum
of trained facial features just as strongly as it did to the
originally-trained faces. The basic trajectory of generaliza-
tion changes in this network included the emergence of a
peak shift effect at intermediate levels of training that later
transformed into an area shift after extensive training.

The purpose of the present study was to assess whether a
simple connectionist model could replicate the gradual
emergence and dissipation of a peak shift effect that occurs
over the course of auditory discrimination training in
humans (Wisniewski et al., 2010). Toward this goal,
variants of a previously developed connectionist model
(Dawson, 2004, 2005, 2008; Dawson & Schopflocher,
1992) used to study auditory perception in chickadees and
known to exhibit peak shift effects (Guillette et al., 2010)
were used to simulate the learning of complex sounds by
humans. The hypothesis was that the model would show
transitory peak-shifts in generalization. Additionally, be-
cause there can be large individual differences in stimulus-
evoked neural representations (Miglioretti & Boatman,
2003; Orduña, Mercado, Gluck, & Merzenich, 2005), and
because different stimulus representations can yield drasti-
cally different generalization patterns (Enquist & Ghirlanda,
2005; Ghirlanda, 2002; Ghirlanda & Enquist, 1998), we
tested how altering the representations used to train the
model would affect the dynamics of generalization.
Because many neural network studies have focused on
replicating the effect of stimulus similarity on the strength
of shift without examining how that strength varies with the
amount of learning, we also tested how stimulus similarity
would affect the dynamics of shifts in networks. Finally,
because past studies of generalization shifts have often
involved different amounts of training (Baron, 1973; Bizo
& McMahon, 2007; Derenne, 2010; Galizio & Baron,
1979; Lewis & Johnston, 1999; Newlin et al., 1979;
Thomas et al., 1991; Wisniewski et al., 2009, 2010), and
because there can be large individual differences in
performance gains during training and generalization
(Nicholson & Grey, 1972; Withagen & van Wermeskerken,
2009), we assessed how different criteria for ending
training affected the variability of generalization gradients.

Simulation 1

In simulation 1, we attempted to produce a transient peak shift
during the learning of a discrimination task, using variants of a
neural network known as a perceptron. The perceptron is a
simple connectionist model developed in the 1950s that
transforms a set of inputs to generate a desired output
(Rosenblatt, 1957). In single-layer perceptrons, several input

units are connected to a single output unit (Fig. 1a). Each
input unit connection is associated with a numerical value
(called a weight) that determines the contribution of that input
to the final output. Multilayer perceptrons are essentially a
series of sequentially applied single-layer perceptrons
(Fig. 1b), in which each layer typically contains a different
number of processing units. The computations performed by
output units, which are the same for both single- and
multilayer perceptrons, are described in the Appendix.

Associative learning theories often characterize discrim-
ination learning as a process in which links between
specific inputs (or elements of inputs) and particular outputs
or associated stimuli become stronger or weaker during
learning (e.g., Blough, 1975; McLaren & Mackintosh,
2002; Saksida, 1999; Spence, 1937). When properties of
an S+ overlap with those of the S−, these theories predict
that features of the S+ that are not shared with the S− gain
associative weight as training progresses. When such
theories have been instantiated as connectionist models
(Ghirlanda & Enquist, 1998, 2006; Livesey et al., 2005; Suret
& McLaren, 2002), they have proven to be able to explain the
direction of shifts in generalization gradients, as well as the
finding that learning to discriminate more similar stimuli can
lead to larger shifts in generalization (Ghirlanda & Enquist,
1998). Because few experiments have attempted to track
changes in generalization shifts over time, past modeling
studies have seldom reported simulations of such changes.

As was noted earlier, a recent study examining the
development of generalization shifts over time revealed that
such learning-induced shifts in generalization can be transient
(Wisniewski et al., 2010). In Wisniewski et al. (2010),
participants learned to identify one sound by pressing a
particular key on a keyboard to indicate that sound and to
press another key to indicate that a different sound had
occurred. Unlike most past studies with animals, this task
reinforces two behavioral responses equally, rather than
reinforcing responses to only one of the stimuli (i.e., the
“S−’’ was not a nonreinforced stimulus). Nevertheless, a
peak shift effect was observed after training, such that sounds
further from the nontarget provoked stronger responses in
generalization tests (Fig. 2). The finding that shifts in
generalization were observed only after intermediate
amounts of training had not been previously described in
the literature, and did not appear to be predicted by existing
models of discrimination learning. The current simulation
tested whether an existing computational model, which was
known to show a peak shift effect, would also show a
dissipation of this effect with extensive training.

We attempted to simulate this effect with a basic
perceptron because this neural network has previously been
shown to produce a peak shift effect in simulations of
auditory discrimination by chickadees (Guillette et al.,
2010) and because perceptron learning algorithms are
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known to capture many of the main features of associative
learning theory (Dawson, 2008; Gluck, 1991).

Method

Network architectures Networks consisted of either a
single-layer or a multilayer perceptron. In both architec-

tures, the input layer consisted of 40 units. For the single-
layer perceptrons (Fig. 1a), each unit in the input layer was
connected to a single output unit. For the multilayer
perceptrons (Fig. 1b), each unit in the input layer was
connected to three units in a hidden layer (the layer
between the input layer and the output unit), and every
hidden layer unit was connected to a single output unit.

a

b

Fig. 1 Illustrations of the architectures of (a) single-layer and (b) multilayer perceptrons used in the simulations

Fig. 2 The generalization gra-
dients reported by Wisniewski,
Church, and Mercado (2010) for
groups of participants trained for
different amounts of trials. Par-
ticipants trained for either 140 or
180 trials showed both a peak
shift and an area shift. Shifts
were also reflected in the em-
pirical data by the gradient
means and modes
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There were no direct connections between input units
and the output unit in the multilayer networks. Net-
works used sigmoid activation functions (see the
Appendix for details). This type of function is often used
in perceptron models and has been used extensively to
model generalization and peak shift (Dawson, 2004, 2005,
2008; Ghirlanda & Enquist, 1998, 2006; Guillette et al.,
2010; Livesey et al., 2005, Suret & McLaren, 2002;
Tanaka & Simon, 1996).

Stimulus representations The stimulus set used by
Wisniewski et al. (2010) consisted of eight stimuli, rank
ordered 1–8, with stimulus 5 used as the “S+” (target stimulus)
and stimulus 4 used as the “S–” (nontarget stimulus). Two
additional stimuli, which were not part of the generalization
distribution, were used during pretraining. Here, we use
overlapping patterns of Gaussian-shaped inputs to represent
the stimuli used byWisniewski et al. (2010). These inputs had
a variance of 5 and a maximum value of 1. Similar
representations have been used previously in connectionist
models of peak shift (Ghirlanda & Enquist, 1998, 2006;
Livesey et al., 2005; Suret & McLaren, 2002). The input
stimulus sets used for pretraining, S+/S– discrimination, and
generalization testing are shown in Fig. 3.

Training and testing Single-layer networks were trained
with the standard perceptron learning algorithm for sigmoid
units, and multilayer networks were trained with error
backpropagation (see the Appendix for details). Connection
weights were adjusted to minimize activation error between
the actual activation of the output unit and the desired
activation (Dawson, 2004, 2005, 2008; Rumelhart, Hinton,
& Williams, 1986). Initial network weights were set at
random between –0.1 and 0.1.

Networks were initially pretrained with a desired value
of 1 in the output unit for the S + and 0 for two other
stimuli that were displaced along the dimension to either
side of the S+. Network pretraining continued until the sum
of the squared error (SSE) in the output unit response was at
least .05. Error was a measure of the difference between the
model’s output and the desired output. For instance, if the
output unit had a desired response of 1 and produced an
output of .75, then the squared error would be .05. This is
because the difference between the desired and actual
response of the output unit (1 – .75) is equal to .25. The
square of .25 is then .05. SSE is the sum of this calculation
for each input pattern. The stimuli used to pretrain the
networks, with the exception of the S+, were not part of the
S+/S– discrimination training or generalization stimulus

Fig. 3 Representations of stim-
uli used in (a) pretraining
(b) S+/S– discrimination, and
(c) generalization testing. For
the generalization stimulus set,
stimuli are ranked from low to
high (1–8) on the basis of their
position from left (low) to right
(high)
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sets. The pretraining procedure is analogous to the
pretraining used previously in experimental studies (Spetch
et al., 2004; Wisniewski et al., 2009, 2010). It also allows
the networks to start S+/S– discrimination with some
discrimination ability between stimuli on the dimension,
rather than being completely naive.

After pretraining, all networks were given S+/S–
discrimination training. The desired output for the networks
was set at 1 for the S+ and 0 for the S–. In order to compare
each model’s generalization after different levels of training
experience, we trained groups of networks to six different
criteria that were defined by (SSE) in the output unit. The
six criteria were SSEs of .5, .3, .2, .1, .05, and .02. Network
training was stopped after the respective SSE level was
reached. After training, generalization was assessed by
presenting networks with the S+, the S–, and six novel
stimuli. In the generalization phase, networks were tested
only for their responding to stimuli and did not experience
more training trials with the new stimuli. Five networks
were trained per network type (multi- or single-layer) and
SSE criterion.

Results and discussion

The mean output unit activation of each group of five single
layer perceptrons for all test patterns is shown in Fig. 4a.
The mean output unit activation was also used to compute

the gradient mean and mode for each criterion level, shown
in Fig. 4b. In this case, gradient means and modes reflect
the strength of shift such that values higher than 5 are
shifted from the S+, in a direction away from the S–. The
higher the value is, the further the shift. Even though
several networks were trained per condition, the standard
errors for output activations, gradient means, and gradient
modes were extremely low (0–.02). For this reason, we
report the values without standard errors for simulation 1
and the rest of the simulations in this article.

Single-layer perceptrons with sigmoid units showed an
increase in shift as SSE decreased on the S+/S– discrimi-
nation. For instance, the networks trained to an SSE of .02
responded most strongly to stimuli 7 and 8. The gradient
means and modes also shifted from the S+, even in the
most extensively trained group of networks. The gradient
mean increased with each level of decrease in SSE. The
gradient mode peaked at SSEs of .2 and .1 and then
decreased at SSEs of .05 and .02, but these modes are still
displaced from the S+ in a direction opposite S–.

Generalization gradients from multilayer networks are
shown in Fig. 4c, d. The multilayer perceptrons showed an
increasing amount of shift with decreased levels of SSE that
was highly similar to the pattern observed in single-layer
perceptrons.

These simulation results are not specific to the parameter
settings, input representations, or number of network units
used. Numerous additional simulations were conducted

Fig. 4 Generalization gradients (a) and gradient modes and means (b) for single-layer perceptrons with sigmoid units, as well as for the
multilayer perceptrons (c and d)
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using different learning rates, numbers of input and hidden
units, and input representations, all of which produced
similar patterns of generalization (unpublished data).
Furthermore, published simulations of face recognition
learning (Tanaka & Simon, 1996) produce comparable
patterns of generalization after different amounts of
training. Collectively, these results suggest that standard
perceptron models of discrimination learning (and related
error-correction-based associative models of learning) pre-
dict that learning-related shifts in generalization are a stable
asymptotic end state of learning. These models predict that
increased training should lead to either greater shifts in
generalization or no changes in generalization once a
maximally shifted state has been reached. Consequently,
these models appear to be unable to account for transient
shifts in generalization that first appear and then dissipate
as learning progresses, as reported by Wisniewski et al.
(2010). Further attempts to modify perceptrons to enable
them to replicate the observed pattern of shift revealed that
the use of an activation function other than the standard
sigmoid function (described below in simulation 2), could
account for this pattern of learning-induced shifts in
generalization.

Simulation 2

Past connectionist models of discrimination learning pro-
vide an elegant and efficient way of instantiating associa-
tive learning theories and of describing a wide range of
empirical data. It would thus be advantageous if these
models could also account for the temporal dynamics of
generalization shifts without requiring major modifications
or increased computational complexity. One feature of
perceptrons that is known to impact how they learn is their
activation functions. These functions determine how
weighted input values are transformed into output values
(see the Appendix for details). In fact, the extensive use of
sigmoid activation functions in current perceptron simu-
lations reflects the fact that this function makes efficient
training of multilayer perceptrons feasible using error
backpropagation. Because activation functions are known
to affect how artificial neural networks learn (e.g., Dawson,
2004, 2005, 2008; Dawson & Schopflocher, 1992), we
explored whether using an activation function other than
the sigmoid function might change the trajectory of
generalization shifts observed during learning.

One activation function that has proven effective in past
pattern recognition systems is the Gaussian function
(similar to a bell curve). This activation function is used
extensively in a type of neural network known as a radial
basis function network (e.g., Park & Sandberg, 1993) and

has also been used in simple perceptron simulations
(Dawson, 2004, 2005, 2008; Dawson & Schopflocher,
1992); in this context, units with Gaussian activation
functions have been described as value units. Value units
are like sigmoid units in that they transform the sum of the
weighted values from each input unit into an output value
that ranges between 0 and 1. Unlike sigmoid units (and
more like a dose response curve), value units transform
both very low and very high sums into outputs smaller than
those for intermediate sums. This allows units to become
selective to a range of input values, as is seen in the
receptive fields of many cortical neurons (e.g., Elhilali,
Fritz, Chi, & Shamma, 2007; Linden, Liu, Sahani,
Schreiner, & Merzenich, 2003). Earlier work comparing
the effects of stimulus coding on learning-induced shifts in
generalization found that simulating different neural codes
for stimuli at the input level could dramatically impact how
generalization shifts developed with training (Enquist &
Ghirlanda, 2005; Ghirlanda, 2002; Ghirlanda & Enquist,
1998). We similarly expected that switching from sigmoid
units to value units might significantly impact the patterns
of generalization exhibited by perceptrons, even if the use
of value units did not affect their ability to learn the trained
discrimination.

Method

Network architectures Networks consisted of either a
single-layer or a multilayer perceptron, the architectures of
which were identical to those described for simulation 1.
Networks used Gaussian activation functions for all layers
(see the Appendix for details).

Stimulus representations The stimulus set used for these
simulations was the same as that used in simulation 1.

Training and testing Single-layer networks were trained
with the perceptron learning algorithm for value units
developed by Dawson and Schopflocher (1992), and
backpropagation was used to adjust weights between
hidden and input layer units in multilayer perceptrons (see
the Appendix for details). All other training and testing
methods were identical to those used in simulation 1.

Results and discussion

The generalization gradients and means and modes of those
gradients for value unit networks are shown in Fig. 5.
Single layer perceptrons (n = 5) made up of value units that
were trained to an SSE of .02 responded strongest to the S+.
Value unit networks that were trained to the criteria of .3, .2,
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and .1 SSE showed gradient shifts, with the most shift seen in
networks trained to .2 SSE. The modes and means of value
unit trained networks also showed a trajectory of general-
ization shift such that the largest shifts in the modes and
means occurred at intermediate levels of SSE.

Multilayer perceptrons composed of value units also
showed a quadratic trend in generalization shift such that
the strongest shifts were seen at intermediate levels of SSE.
It should be noted here that even though the multilayer
networks of value units showed a quadratic trend in mode
and mean shift, the responses to stimuli 1 and 2 are
qualitatively higher than in the empirical data or the single-
layer perceptron simulations. Thus, the single-layer percep-
tron provided a better qualitative fit to the transient shifts in
generalization reported by Wisniewski et al. (2010). This
finding suggests that the better fit of the value-unit-based
perceptron is not due to greater computational power
(because the multilayer perceptron is more powerful) and
that the use of Gaussian functions within a perceptron does
not guarantee that the network will generalize symmetri-
cally both early and late in training. In general, the
differences in generalization behavior of single- and
multilayer perceptrons constructed from value units were
much greater than observed in simulation 1.

The results of these simulations demonstrate that switch-
ing from a sigmoid activation function to a Gaussian
activation function enables the single-layer perceptron
model to account for the appearance and later disappear-

ance of a peak shift effect during discrimination learning.
To our knowledge, this is the first report of a computational
model showing temporary shifts in generalization during
discrimination learning. It remains possible that other
learning theories or computational models (e.g., radial basis
function networks) might predict similar trajectories in
generalization shifts, but if so, these properties of existing
models have yet to be explicitly noted. Why perceptrons
with Gaussian activation functions are better able to
account for transient shifts in generalization gradients is
considered in more detail in the General Discussion section.

Simulation 3

Manipulations to the type of stimulus representations given
to computational models can strongly impact the way they
generalize. For instance, within the same model, using
different shapes of representations can determine whether a
generalization gradient shows peak shift or a tendency to
respond to stimuli with the most input layer activation after
learning (Ghirlanda, 2002; Ghirlanda & Enquist, 1998).
The degree to which stimulus representations overlap can
impact generalization as well (Ghirlanda & Enquist, 1998).
We performed an additional set of simulations to test how
representing stimuli differently would impact the temporal
dynamics of generalization shifts that were seen in
simulations 1 and 2.

Fig. 5 Generalization gradients (a) and gradient modes and means (b) for single-layer value unit networks. Results for multilayer networks
trained with value units (c and d)

Learn Behav (2012) 40:128–144 135

Author's personal copy



Method

Network architectures Networks were single-layer percep-
trons with the same architectures as single-layer perceptrons
in simulations 1 and 2. Networks had a single output unit of
the sigmoid or value unit type.

Stimulus representations Different stimulus representations
were tested in different sets of networks. Triangle- and
center–surround-shaped input layer representations were
used. We also tested modifications to the Gaussian used in
simulations 1 and 2 by reducing the resolution of the
original Gaussian or by using Gaussians with other
variances. The resolution of the stimulus representation
was reduced by taking every other value of the Gaussian,
but maintaining the peak at 1, as well as its symmetry.
Different variances of the Gaussian were tested by keeping
the peak activation for a stimulus representation at its
original input unit, but replacing the variance of the
Gaussian with the values 1, 3, 7, and 10. Thus, representa-
tions with low variances were narrow and overlapped little,
whereas representations with high variances were wide and
overlapped greatly. Figure 6 display shapes of the center–
surround, triangle, and reduced Gaussian representations.

Training and testing Training and testing was identical to
single-layer perceptron training and testing in simulations 1

and 2. Two single-layer networks were trained for each type
of representation, unit type (sigmoid or value), and criteria
level.

Results and discussion

For sigmoid unit networks trained with different types of
representational shapes and with different resolutions of the
original Gaussian, there was an increase in shift with
decreasing SSE on the S+/S– discrimination similar to the
results from simulation 1. Networks trained extensively (i.e.,
to a criterion of .02 SSE) still showed shift from the S+.
Value unit networks trained with these representations
showed generalization patterns similar to those of simulation
2. That is, these networks showed maximum shift at
intermediate SSE levels. There were few differences between
networks (with the same unit type) trained with different
representations in how they generalized. The means and
modes for these networks are shown in Fig. 7.

The means and modes of generalization gradients for
sigmoid and value unit networks trained with Gaussian
representations that had different variances are shown in
Fig. 8. For sigmoid unit networks, the trend in shift with
decreasing SSE on the S+/S– discrimination was such that
the lowest SSE conditions still showed shift. This was true
for all variances. Sigmoid unit networks trained with
Gaussian representations that had a variance of 1 or 10
shifted later on in learning than networks trained with
variances of 3 and 7. For value unit networks, the quadratic
trend we observed using a variance of 5 in simulation 2 did
not hold when variances were much lower (i.e., 1), or much
higher (i.e., 10). The gradient means increased with
decreasing SSE, and the modes still show shift at the
lowest level of SSE. It thus seems that when representations
are narrow with little overlap, or wide and highly over-
lapping, the trend is an increase in shift. The networks did
show a quadratic trend, however, when variances of 3 and 7
were used.

In summary, the generalization patterns of networks in
simulation 3 demonstrate that the trends in gradient shifts
over the course of learning that we found in simulations 1
and 2 are repeatable using different shapes of stimulus
representation. In the case of sigmoid unit networks this
was also true for input representations that overlapped to
different degrees (Gaussians with different variances).
However, the time course of shifts was slightly delayed in
networks trained with narrow or wide Gaussian representa-
tions. For value unit networks, the degree of overlap did
matter for whether or not the quadratic trend in generaliza-
tion shifts was observed. Part of the reason for this effect
could be that training stimuli with different degrees of

Fig. 6 (a) Center–surround, (b) triangle, and (c) reduced resolution
Gaussian representations
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Fig. 8 Gradient means (a, c) and modes (b, d) of sigmoid and value unit networks obtained for different levels of SSE with different variances of
the Gaussian used to represent stimuli in the input layer

Fig. 7 Gradient means (a, c) and modes (b, d) for sigmoid and value unit networks trained and tested with triangle, center–surround, or reduced
resolution Gaussian representations
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overlap yield different generalization patterns (Baron, 1973;
Ghirlanda & Enquist, 1998; Hanson, 1959; Spence, 1937).
We further explored the effect of S+/S– overlap and
similarity in simulation 4.

Simulation 4

As was mentioned previously, the similarity between S+
and S– during discrimination learning can affect how much
the peak of generalization shifts. In Hanson’s (1959) classic
peak shift demonstrations with pigeons, more similar S+
and S– discrimination wavelengths led to a larger shift in
generalization away from the S–. The effect of S+/S–
similarity on the peak shift effect is a consistent empirical
result (Baron, 1973; Hanson, 1959; Purtle, 1973) that
adequate discrimination learning models should replicate.
Although perceptrons with sigmoid units do replicate the
effect of S+/S– similarity on generalization (e.g., Ghirlanda
& Enquist, 1998), to our knowledge, similar replications
with value unit networks have not been reported. For this
reason, in simulation 4, we tested whether a single-layer
perceptron with a value output unit would produce this
effect. Also, there are no studies that have yet examined
how fixed stimulus similarity during discrimination training
affects the trajectory of learning-related shifts either
empirically or theoretically. Thus, in simulation 4, we also
tested the generalization of single-layer perceptrons with
sigmoid and value units trained to different SSE criteria.

Method

Network architectures Network architectures were identical
to the single-layer perceptrons used in simulations 1, 2, and
3. Networks had either a sigmoid or a value output unit.

Stimulus representations The stimulus representations for
pretraining and generalization testing were the same as
those used in simulations 1 and 2. The stimulus represen-
tation for the S+ in S+/S– discrimination training was the
same as it was in simulations 1 and 2, but the S– stimulus
was stimulus 2, 3, or 4 from the set of generalization stimuli
shown in Fig. 3c.

Training and testing Training criteria of .5, .3, .2, .1, .05, .02,
and .01 SSE were used. Pilot testing revealed that some value
unit networks did not show the dissipation of shift after
being trained to an SSE of .02 but did show this effect after
being trained to an SSE of .01. For this reason, we included
the additional SSE criterion of .01. Two networks were
trained per S– condition, criterion, and unit type. All other
training and testing methods were identical to those used in
simulations 1, 2, and 3.

Results and discussion

The means and modes of the gradients for each group of
networks are shown in Fig. 9. For both sigmoid and value
unit trained networks, S+/S– discrimination training with an
S– more similar to the S+ led to larger gradient shifts. For
instance, in sigmoid unit networks, the values for the largest
gradient modes in each S– condition were 7.0 (S– = stimulus
2), 7.5 (S– = 3), and 8 (S– = 4). The largest gradient means for
each group of sigmoid unit networks were 5.81 (S– = 2), 6.17
(S– = stimulus 3), and 6.48 (S– = 4). For value unit networks,
the largest gradientmodeswere: 6 (S–= 2), 6 (S– = 3), and 7 (S–
= 4); the largest gradient means were 5.65 (S– = 2), 6.00
(S– = 3), and 6.26 (S– = 4). The replication of the effect of
S+/S– similarity on peak shift in the value unit neural
networks indicates that value unit perceptron networks
capture other effects of discrimination learning on general-
ization, in addition to the temporal dynamics of shift over
the course of training.

Although the general trend over the course of learning in
networks was such that perceptrons composed of a sigmoid
output unit increased shift with learning and value unit
networks showed a quadratic trend, stimulus similarity did
have an effect on how shifts progressed. Greater similarity
of stimuli resulted in generalization shifts appearing earlier
in training. For example, for value unit networks that were
trained with stimulus 4 as the S–, the peak mean shift was
at an SSE of .2. However, for networks trained with
stimulus 2 as the S–, the peak of mean shift was seen at an
SSE of .02. To our knowledge, these predicted differences
in the temporal dynamics of generalization have yet to be
empirically tested.

Simulation 5

The previous simulations show that generalization shifts
can depend greatly on the degree to which neural networks
learn an S+/S– discrimination. Many past studies of
generalization and peak shift involved training participants
for a specific number of trials (Baron, 1973; Bizo &
McMahon, 2007; Derenne, 2010; Lewis & Johnston, 1999;
Newlin et al., 1979; Thomas et al., 1991; Wisniewski et al.,
2009, 2010), rather than to specific performance criteria.
Recent experimental data also show that generalization
differs strongly and, sometimes, nonmonotonically with
changes in discrimination performance (Wisniewski et al.,
2010). Therefore, training to a specific trial criterion may
lead to more variability between participants in generaliza-
tion than training to a performance criterion. To examine
this possibility, in simulation 5, single-layer perceptrons
were trained with different learning rates, to criteria defined
by SSE or by the number of trials.
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Method

Network architectures Network architectures were identical
to the single-layer perceptrons used in simulations 1–4.

Stimulus representations Stimulus representations were
identical to those used in simulations 1 and 2.

Training and testing Training and testing procedures were
the same as those used for single-layer perceptrons in
simulations 1–3, with the following exceptions. Networks
were trained to the six criterion levels, rank-ordered from
lowest to highest, and defined by the SSEs previously used
in simulations 1–3 or for a prespecified number of training
trials (10, 160, 320, 640, 1,280, or 2,560 trials). Different
learning rates of .01, .02, .04, and .08 were used to simulate
individual differences in learning capacity. One network
was trained per unit type, learning rate, and criterion level
defined by SSE or number of training trials.

Results and discussion

Figure 10 shows the standard deviation of the gradient means
calculated by averaging over learning rate at each criterion
level. Generally, the standard deviation of generalization

gradient means was higher for sigmoid and value unit
networks that were trained for a specified number of trials
than for networks that were trained to criterion levels 1–4.
Criterion levels 5 and 6 for value unit networks show similar
standard deviations for networks trained to a criterion defined
by SSE and number of trials. Overall, however, the results
suggest that averaging over individuals who have learned to
different degrees can yield more variable generalization
gradients and that the degree of performance on S+/S−
discrimination is a more accurate predictor of generalization.

General discussion

The present simulations demonstrate that perceptron models
of discrimination learning can replicate the quadratic trend for
shifts in generalization gradients reported byWisniewski et al.
(2010), in which a peak shift effect emerges and then
dissipates during the course of learning. However, percep-
trons constructed with sigmoid units were not successful in
capturing this trend. Sigmoid units have been popular in
previous connectionist models of peak shift, which is
understandable given that they predict peak shift after
learning (Ghirlanda & Enquist, 1998, 2006; Livesey et al.,
2005; Tanaka & Simon, 1996), but here they appear to result
in stronger shifts with more training on the S+/S−

Fig. 9 Displayed are the generalization gradient means (a, c) and modes (b, d) for sigmoid and value unit networks trained to different levels of
SSE with differing similarity between S+/S– stimuli in training
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discrimination. This was true for both single- and multilayer
architectures. In contrast, single- and multilayer networks
trained with value units qualitatively replicated the quadratic
trend in gradient shifts. In perceptrons with Gaussian
activation functions, shifts in gradients occurred only after
intermediate levels of performance were reached on the S+/S−
discrimination. Discrimination performance on the S+/S−
discrimination that was too poor, or too good, led to
little or no shift in the generalization gradients of
networks. Previous simulations have shown that net-
works constructed with Gaussian activation functions
have several computational advantages (Dawson, 2004,
2005, 2008; Dawson & Schopflocher, 1992). Our results
demonstrate that, in at least some cases, they may also
better capture the temporal dynamics of learning and
generalization after discrimination training.

Comparison with earlier models of generalization shifts
in humans

In the past, special attention has been given to how well
findings obtained in experiments with nonhumans general-
ize to human behavior. For instance, Thomas and col-
leagues (Newlin et al., 1979; Thomas, 1993; Thomas et al.,
1991) suggested that humans are much more sensitive to
manipulations to the range of stimuli presented during
generalization testing than are other animals. Specifically,
they noted that humans tend to respond to the center of a
range of generalization stimuli. If the range of stimuli
presented during generalization tests is shifted, the peak of
generalization gradients for humans can shift as well. These
range effects have led some researchers to question whether
learning-related shifts in humans reflect the same mecha-
nisms as shifts observed in nonhumans (Bizo & McMahon,
2007; Thomas, 1993; Thomas et al., 1991), whereas others
have challenged this idea (Galizio & Baron, 1979;
Ghirlanda & Enquist, 2006; Spetch et al., 2004; Wisniewski
et al., 2009).

Models developed to account for range effects in
humans have utilized relational representations to account
for generalization shifts.1 For instance, Thomas (1993)
extended Helson’s (1964) adaptation-level theory to com-
putationally specify a relational process that replicated the
range effects seen in human generalization. According to
Thomas, humans develop a prototype of all stimuli along a
dimension, which he called the adaptation level (AL); he
defined adaptation level as the mean of all stimuli
experienced. In this framework, participants learn to
identify the S+ during discrimination learning by respond-
ing to the adaptation level plus some amount (AL + X).
During generalization testing, a change in stimulus range
can alter the mean, and as a result, the rule AL + X leads to
a peak of responding that is at a stimulus other than the S+.
The adaptation level model has successfully replicated the
central tendency effect and predicted learning-related shifts
in many conditions for which they occur.

In the present simulations, we were able to account for
the temporal dynamics of human generalization shifts with
a simple perceptron that has been previously used to model
songbird perceptual discrimination of naturally occurring
stimuli (Guillette et al., 2010). Importantly, Thomas’s
(1993) adaptation-level model cannot account for the shifts
in generalization observed by Wisniewski et al. (2010),
because generalization testing in that experiment was
designed to maintain a fixed adaptation level during both
training and testing.2 Successful simulation of transient

1 For an alternative modeling approach to range effects in humans, see
Ghirlanda and Enquist (2006).

Fig. 10 Standard deviations of
gradient means for sigmoid and
value unit networks that were
trained to different levels of SSE
or different amounts of trials

2 Thomas (1993) also suggested that adaptation level theory could
explain peak shifts when the computed adaptation level did not shift
between training and testing periods. This could be done if the value
of X increases from training to testing due to the greater abundance of
stimuli during generalization. However, Thomas specified that values
of AL and X would change to best represent the generalization stimuli,
making changes to values unidirectional. Thus, this explanation
cannot explain the quadratic trend in shift seen empirically or in
value unit networks.
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peak shift effects with a perceptron shows that relational
mechanisms are not necessary to explain human peak
shift effects in cases where range effects are controlled
for (Galizio & Baron, 1979; Spetch et al., 2004;
Wisniewski et al., 2009, 2010) and suggests that percep-
trons can adequately model discrimination learning and
generalization by both humans and nonhumans (Ghirlanda
& Enquist, 2006; Mercado, 2008; Spetch et al., 2004;
Wisniewski et al., 2009).

Impacts of stimulus encoding on generalization shifts

Value units may have been better for simulating the empirical
results of Wisniewski et al. (2010) for at least two reasons.
First, the receptive fields of many neurons in the cortex that
code for the features of sound selectively respond to specific
features of an input, with response decreasing to properties
that are dissimilar to those features (e.g., Elhilali et al., 2007;
Linden et al., 2003). Sigmoid activation functions cannot
capture this type of receptive field. It could be that Gaussian
activation functions simulate these types of receptive fields
and that these receptive fields are important for discrimina-
tion training. Second, Wisniewski et al. (2010), and many
others studying generalization (Baron, 1973; Bizo &
McMahon, 2007; Derenne, 2010; Lewis & Johnston, 1999;
Spetch et al., 2004; Thomas et al., 1991; Wisniewski et al.,
2009), used a task for which participants were told to make a
response only to the trained stimulus and nothing else.
Gaussian activation functions may be best for modeling tasks
in which responses should be withheld in the presence of
stimuli that are different from the trained stimulus in both
directions along the relevant dimension (Dawson, 2004,
2005, 2008; Dawson & Schopflocher, 1992). In contrast,
sigmoid functions may be more appropriate for modeling
tasks in which participants are instructed to generalize
responses to novel stimuli (as in studies of the caricature
effect; Tanaka & Simon, 1996).

The simulations also suggest that differences between
stimuli in training and testing can impact the temporal
dynamics of generalization shifts. When the representations
of stimuli used to train networks were changed such that the
representations were very wide and overlapping, or very
narrow and far apart, a monotonic increase in shift with
learning was seen. It was additionally found that the
overlap of stimulus representations during discrimination
learning impacted the strength and the time course of
gradient shifts such that greater overlap led to larger shifts
with a faster time course (i.e., shifts developed earlier in
learning). Neural representations evoked by stimuli vary
from individual to individual (Miglioretti & Boatman,
2003; Orduña et al., 2005), and these representations can
change over the course of learning (Elhilali et al., 2007;
Goldstone, 1998; Saksida, 1999). It could be the case that

transient shifts may not be seen for all participants and that
the state of initial stimulus representations in an individual
restricts how he or she can associate those representations
to responses, as well as how they generalize (Gibson, 1969;
Mercado, 2008).

We also found that generalization was more variable when
networks were trained to a criterion based on the number of
training trials than to a criterion based on discrimination
performance. This finding suggests that when investigating
trajectories of changes in generalization, the method of
training for a certain number of trials (Baron, 1973; Bizo &
McMahon, 2007; Derenne, 2010; Galizio & Baron, 1979;
Lewis & Johnston, 1999; Newlin et al., 1979; Thomas et al.,
1991; Wisniewski et al., 2009, 2010) may be less effective
than training to a performance criterion (Spetch et al., 2004;
Wills & Mackintosh, 1998). In addition, there are large
individual differences in how participants generalize
(Guttman & Kalish, 1956; Landau, 1968; Nicholson & Gray,
1972; Orduña et al., 2005). Some of the previously reported
differences in generalization may stem from participants’ not
reaching similar levels of performance.

The present simulations lead to several novel predictions
about the temporal dynamics of generalization shifts: (1)
Shifts in generalization over the course of learning should
gradually increase and then reach a stable asymptotic state
when individuals learn to discriminate stimuli along a
dimension that is encoded by absolute neural firing rate but
may be transient when the relevant dimension is encoded
by selectively tuned neurons; (2) in the latter case, transient
shifts will occur only when stimulus representations are
moderately overlapping, but not when there is no overlap in
encoding or when there is extensive overlap; (3) more
similar stimuli should lead to quicker transitions in
generalization shifts; (4) training individuals to a perfor-
mance criterion should lead to less variable generalization
than training for a fixed number of trials; and (5)
individuals with different learning trajectories (e.g., differ-
ent learning rates) should show different shifts in general-
ization with training. These predictions not only provide a
way to assess the adequacy of current models of discrim-
ination learning but also suggest that many of the
previously reported differences in generalization between
humans and other animals (and across different stimulus
dimensions) may reflect differences in stimulus encoding,
training regimens, and learning capacities, rather than
differences in generalization mechanisms.
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Appendix

Architectures

In all perceptrons, units had a net input value (netj) that
reflected the sum of their input activations (αi) after being
multiplied by their weighted connection (wij) with the
output unit. Equation 1 shows this computation:

netj ¼
XM

i¼ 1

aiwij ð1Þ

Thus, the output unit in the single-layer networks
received a weighted sum of all input unit activations.
This was also the case for the hidden units in the
multilayer networks. However, the output unit of
multilayer networks received a weighted sum of the
hidden unit activations and did not have any direct
connections to the input units.

Units transformed netj into a value that ranged between
zero and one, using activation functions. The activation
function for sigmoid unit networks is shown in Eq. 2:

aj ¼ f netj
! "

¼ 1

1þ e % netj þ qjð Þð Þ ð2Þ

In this equation, low netj values are converted to low
activations (αi) (near 0) and high netj values are converted
to high activations (near 1).

For value unit networks the activation function was
Gaussian (Eq. 3):

aj ¼ G netj
! "

¼ e %p netj%mjð Þ2
! "

ð3Þ

αj represents the activation for a value uniti, netj is the
net input for that unit, and μ is the Gaussian mean. When
netj equals μ, αj is equal to 1. As netj becomes dissimilar to
the mean in either direction, αj becomes closer to 0.

Learning algorithms

Sigmoid and value unit single-layer networks were trained
using gradient descent learning algorithms. For sigmoid units,
the change in a weighted connection between input unit i and
output unit j after a sweep of training is defined in Eq. 4:

Δwij ¼ h & ai & aj & 1% aj
! "

tj % aj
! "

ð4Þ

In this equation, η is the learning rate, αi is the activation
of the input unit, αj is the activation of the output unit, and
tj is the desired activation of the output unit. It should also
be noted that the term (1 - αj) is the first derivative of the
sigmoid activation function. Thus, the change in the weight
of the connection between an input and an output unit is a
function of the learning rate parameter, the activation
function, and the difference between the desired and
actual outputs of the output unit. This algorithm was
modified in the gradient descent rule defined by
Dawson and Schopflocher (1992) that was used to train
value units with Gaussian activation functions. Part of
their modification involved an elaborated error term that
included two parameters for error. These can be seen in
Eqs. 5 and 6:

dpj ¼ tpj % apj
! "

& %2p & netpj
! "

& e %p netpj %mð Þ2
! "

ð5Þ

"pj ¼ tpj & netpj % mpj

# $
ð6Þ

Note that δpj is the same as the error term used to adjust
the weight of sigmoid units (Eq. 4), except that it uses the
derivative of the Gaussian rather than of the sigmoid
activation function. Namely, it is the difference between the
output unit’s intended activation (tpj) and the actual activation
(αpj) for a given input pattern (p) multiplied by the derivative
of the Gaussian. The second error term, εpj, is a measure of
error between the net input of an output unit and the mean of
the Gaussian activation function multiplied by the desired
activation of the unit. Dawson and Schopflocher (1992)
found that the elaborated error term was needed to reliably
train perceptrons with Gaussian activation functions in order
to avoid weights that approached negative or positive
infinity. The equation with the additional error term that
was used to adjust weights between units is shown in
Eq. 7:

Δwij ¼ h & dpj % "pj
! "

& apj ð7Þ

For training of multilayer networks, error backpropaga-
tion was used to adjust the weights between hidden layer
units and input units. The standard generalized delta rule
defined by Rumelhart et al. (1986) was used. For value unit
networks, the only difference was that the error used in
backpropagation was the elaborated error term defined by
Dawson and Schopflocher (1992). More detailed descrip-
tions of network architectures and learning algorithms can
be found in Dawson (2004, 2005, 2008; Dawson &
Schopflocher, 1992). All simulations in this paper were
conducted using software provided by Dawson (2004) for
which it was possible to use the learning algorithms and
activation functions listed above.
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Biological plausibility

It should be noted that perceptrons with different architec-
tures vary in how biologically plausible they are. For
instance, the activation functions used in processing units
within networks can mimic the type of encoding that
happens neurally (Dawson, 2004, 2005, 2008; Enquist &
Ghirlanda, 2005). Gaussian activation functions mimic the
receptive fields of neurons coding for rearrangement
dimensions like frequency, whereas sigmoid activation
functions mimic the receptive fields of neurons coding for
intensity dimensions like the loudness of sound. Other
activation functions, such as those proposed originally by
Rosenblatt (1957), can mimic the all-or-none firing of a
neuron. The learning algorithms used in perceptrons also
vary in biological plausibility. For instance, there are
unsupervised learning algorithms (e.g., Kohonen, 1990)
that do not require feedback of what the desired response is.
These algorithms may be more biologically plausible
than supervised learning algorithms, because much
learning occurs when there is not a supervisor indicating
to the learner the intended response. There are also
alternatives to standard backpropagation for training
multilayer networks, such as recirculation methods that
generate error terms based on internal network activation
(e.g., O’Reilly, 1996).
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