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Introduction

Experience can alter the perception of our sensory envi-
ronments (Gibson 1969; Goldstone 1998). This perceptual 
learning subsequently affects how we map sensations to 
meanings and behaviors (for review, see McGann 2015). 
For instance, the stimulus generalization of learned associ-
ations depends on the similarity between novel stimuli and 
those experienced during learning (for review, Ghirlanda 
and Enquist 2003). A modification to sensitivities brought 
about through perceptual learning can affect stimulus gen-
eralization by either broadening or narrowing the range of 
stimuli that elicit a learned response (Church et  al. 2013; 
Derenne et al. 2015; Gibson 1969; McLaren and Mackin-
tosh 2000; Saksida 1999; Weinberger 2007; Wisniewski 
et al. 2010). Studies of perceptual learning’s impact on gen-
eralization are fundamental to understanding how experi-
ences impact real-world behaviors. From racial stereotyp-
ing (Perrachoine et  al. 2010) to extracting meaning from 
speech (Best et al. 2001), the ability to tell sensations apart 
can have profound effects on behavior (for review, see Gib-
son 1969; Goldstone 1998).

Discrimination training paradigms have been used 
extensively to study how learning affects both perceptual 
sensitivities and the generalization of learned associa-
tions. Perceptual learning experiments often ask a learner 
to apply different labels to similar stimuli (e.g., “Did you 
hear a ‘low’ or ‘high’ frequency tone?”), or to compare two 
stimuli on some quality (“Which of two tones were higher 
in frequency?”). Typically, performance enhancements 
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over the course of training are revealed (for review, see 
Goldstone 1998; Wright and Zhang 2009). Similarly, train-
ing in which one stimulus receives response reinforcement 
(e.g., a 1000  Hz S+ tone), but another does not (e.g., a 
950 Hz S− tone), often reveals a sharping of generalization 
between S+ and S− in comparison with control groups that 
receive non-discrimination training (cf., Baron 1973; Wis-
niewski et al. 2009). That is, discrimination training leads 
to increased specificity of the learned response measured 
between S+ and S− (for review, see Riley 1968). Such dis-
crimination training is often used as a way to improve per-
ceptual performance in a wide range of tasks (e.g., Deveau 
et al. 2014; Temple et al. 2003).

However, discrimination procedures do not always pro-
duce favorable modifications to perception. In the auditory 
domain, learning that takes place in one frequency region 
can come at an acuity cost in another frequency region 
(Reed et al. 2011; Wisniewski et al. 2014a, b). For instance, 
rats trained to discriminate frequencies near 19  kHz 
improved relative to controls at discriminating frequen-
cies near 19  kHz, but worsened in performance at lower 
frequencies relative to controls (Reed et al. 2011). Similar 
worsening effects have been reported along other auditory 
dimensions (Fitzgerald and Wright 2005; Ortiz and Wright 
2010; Sabin et  al. 2012; Wisniewski et  al. 2014a, b) and 
in the visual (e.g., Goldstone 1994; Petrov et al. 2005) and 
tactile modalities (Hodzic et al. 2004). Some other studies 
have demonstrated within-task worsening over the course 
of training. For instance, repeated within-day testing on 
a visual texture discrimination task leads to worsening in 
performance that is specific to the characteristics of the 
tested stimulus and retinotopic location (Mednick et  al. 
2002, 2005). In addition, the classic peak shift phenom-
enon appears when discrimination training causes greater 
responding strength for a novel stimulus than for a stimulus 
that was paired with response reinforcement (i.e., an S+). 
In the discrimination example given above where responses 
are reinforced for a 1000 Hz S+ tone, but not for a 950 Hz 
S− tone, this might manifest as greatest responding occur-
ring for a tone at 1050  Hz post-training (for review, see 
Baron 1973; Purtle 1973; Wisniewski et al. 2009). In this 
case, learning leads participants to falsely identify an 
untrained stimulus as one they experienced previously.

These generalization asymmetries can impact real-world 
behaviors by either increasing confusion between percepts 
associated with different meanings or producing incorrect 
generalizations to novel stimuli. For instance, Mednick and 
colleagues (2005) argue that visual worsening affects the 
“useful visual field” (i.e., the region of visual space from 
which information can be extracted) and can hinder real-
world tasks like driving. It has been repeatedly observed 
that familiarity with one’s native language can hinder 
learning of speech sounds in another language (e.g., Best 

et al. 2001). Miller et al. (2015) recently trained individuals 
to discriminate melanoma symptomatic lesions (S+) from 
asymptomatic lesions (S−) and found that this training 
could lead to a significant increase in the number of missed 
identifications of melanoma. Similarly, several groups have 
demonstrated that the peak shift effect can lead to unreal-
istic aesthetic preferences for stimuli that do not exist in 
the natural world (Derenne et al. 2008; Ramachandran and 
Hirstein 1999; also see; Tinbergen 1951).

Any adequate model of perceptual learning and stimu-
lus generalization must account for both favorable and 
unfavorable consequences of learning. Most modeling 
efforts have focused on the former. Unfortunately, the 
learning processes that drive worsening and peak shift 
effects are less well understood. Worsening has received 
post-hoc explanations, including the adoption of inap-
propriate listening strategies (e.g., Fitzgerald and Wright 
2005), reduced motivation (Amitay et al. 2010), and repre-
sentational plasticity (e.g., Mednick et al. 2005; Ortiz and 
Wright 2010; Reed et al. 2011; Wisniewski et al. 2014a, b). 
Peak shift explanations range from associative task-specific 
reweighting of stimulus representations (e.g., Ghirlanda 
and Enquist 1998) to relational-learning (e.g., Lynn et  al. 
2005; Thomas 1993). Though worsening and peak shift can 
arise from very similar training procedures, no study has 
explored both in a single experiment. Formal modeling of 
these learning effects is either lacking (in the case of wors-
ening), or has proceeded largely without consideration for 
how modifiable perceptual acuities and the generalization 
of learned responses interact (in the case of peak shift; 
although, see McLaren and Mackintosh 2002; Wisniewski 
et  al. 2012). Furthermore, for both phenomena, theories 
that specify drastically different psychological processes 
often make similar predictions, making if difficult to deter-
mine the processes that lead to any one instance of worsen-
ing or peak shift.

The current study

This work aimed to characterize and model worsening and 
peak shift effects resulting from a single experiment with 
human participants. Participant data were simulated with 
a connectionist model built around basic perceptual learn-
ing theory. The goal of the simulations was to establish a 
framework wherein asymmetries can be examined with 
theory driven predictions.

Participants were tested in an auditory ABX task (a.k.a. 
match-to-sample) with frequency-modulated (FM) stimuli 
after non-directional FM rate discrimination training (‘Tar-
get’ FM rate versus both a faster and slower rate). They 
were tested again in a second session after directional FM 
rate discrimination training (‘Target’ FM rate versus either 
a faster or slower rate). Generalization of “Target” 
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responding along the FM rate continuum was probed 
throughout training and was expected to reveal peak shifts 
in a direction opposite an individual’s trained “Non-Target” 
rate in Session 2 only. For instance, if an individual’s ‘Non-
Target’ rate of FM was slower than the ‘Target’ in Session 
2, responding would be greatest for an FM rate that was 
faster than the ‘Target’. It was also expected that comparing 
Session 1 to Session 2 ABX tests would reveal: (1) a wors-
ening of acuity between the “Target” and stimuli shifted in 
a direction opposite the “Non-Target” and (2) improve-
ments for ABX trials containing sounds nearer the trained 
“Non-Target” (cf. Reed et al. 2011; Wisniewski 2013).1

The behavioral data were simulated with a simple con-
nectionist model entailing both the plasticity of stimulus 
representations (representational modification) and asso-
ciative learning (task-specific reweighting) processes (see 
Fig.  1; cf. Petrov et  al. 2005; Saksida 1999; Wisniewski 
2013). The former is a process supported by work in the 
neurosciences demonstrating that response properties of 
neurons are malleable (for review, see Fahle and Poggio 
2002; Weinberger 2007). Non-human (e.g., Recanzone 
et  al. 1993; Reed et  al. 2011; Rutkowski and Weinberger 
2005) and human (Elbert et al. 1995; Orduña et al. 2012; 
Tremblay and Kraus 2002) studies show that perceptual 
training can change how cortex responds to trained stimuli. 
For instance, Reed et  al. (2011) found a reduced number 
of rat auditory cortical neurons coding for sounds that dis-
played worsening compared to controls.

Task-specific reweighting refers to how information in 
stimulus representations is weighed in the decision or asso-
ciative process. For instance, in the absence of any change 
to sensory representations, learning may involve weighing 
particular features of a representation more heavily than 
others (e.g., by weighing activity of neurons that code for 
high frequencies more than neurons coding for low fre-
quencies). Several neuroscience works also support this 
type of process. For instance, in a somatosensory fMRI 
study, learning was accompanied by changes in brain areas 
associated with decisional processes and not in somatosen-
sory cortex (Sathian et al. 2013). EEG methods that have 
better time resolution also support human perceptual learn-
ing processes at a decisional stage (Wisniewski et al. 2016). 
Peak shift and worsening have been proposed to result from 
both processes (see above), making this framework a suit-
able starting place for the modeling.

1 The current design and hypotheses were based on the dissertation 
work of the author, which also showed worsening and the peak shift 
effect using a between-subject design (Wisniewski 2013).

Methods

Participants

Twenty-five listeners (13 male; ages 19–33) participated. 
All provided informed consent and self-reported normal 
hearing. Two were dropped for less than 65% accuracy in 
the last block of the first training session (mean perfor-
mance for the rest of the sample was 90% correct). Two 
others were eliminated for performing well below chance 
(<40% correct) for one or more contrasts in the ABX task 
of Session 1. Poor session 1 performance made it difficult 
to assess learning-related changes in performance for these 
individuals. One randomly selected listener was dropped to 
maintain appropriate counterbalancing.2 Procedures were 
approved by the Institutional Review Board of the U.S. Air 
Force Research Laboratory.

2 Including this individual in analyses did not change any of the sta-
tistical conclusions reached.

Fig. 1  Depiction of the connectionist model used to simulate data 
from the behavioral experiment. Each circle represents one unit in 
the network. Patterns of activation for the ‘Target’ stimulus are shown 
as traces over layer units. Stimuli are initially represented as overlap-
ping patterns of Gaussian activation in the input layer. These input 
activations are converted to activation in the hidden layer based on 
the similarity of weighted connections to input. Output activation 
(not shown) is then computed using the sum of weighted connections 
with the hidden layer. Representational modification takes place in 
the weights between input layer units and hidden layer units (only one 
set of hidden unit weights is shown). Task-specific reweighting takes 
place in the weights between hidden layer units and the single output 
unit. Spectrograms of the sweep sounds used in the experiment are 
also shown
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Stimuli and apparatus

Upward FM sweeps were used. All spanned frequencies 
from 500 to 1000 Hz and had rates of 4.0, 5.76, 6.91, 8.29, 
9.95, 11.94, or 17.20 octaves per second. Each successive 
increase in rate in this stimulus set is proportional to the 
last (40, 20, 20, 20, 20, and 40%, respectively). The ‘Tar-
get’ was always the 8.29 octaves per second sound (see 
Fig. 1 for spectrograms of stimuli).

Experimental procedures were executed in MATLAB 
(Natick, MA). Participants heard sounds through Sen-
nheiser HMD 280-13 headphones at a comfortable listen-
ing level. Responses were made via a computer keyboard.

Procedures

Two sessions were conducted on separate consecutive days. 
Session 1 started with a single-interval two-alternative 
forced choice task (1i-2afc) in which participants were to 
hit a key marked ‘T’ (for ‘Target’) when the ‘Target’ rate 
was presented and a key marked ‘NT’ (for ‘Non-Target’) 
for any other rate. There were seven blocks of 23 trials (161 
trials total). Seven of those trials within a block served to 
probe ‘T’ responding to each FM rate. Remaining trials (8 
for the ‘Target’, 4 for 4.00 octaves per second, and 4 for 
17.20 octaves per second) were considered training trials. 
Training trials at the extreme ends of the tested FM rate 
dimension served to make it clear that sounds both slower 
and faster than the ‘Target’ required an NT response. Note 
that though this is a discrimination procedure, it is non-
directional (i.e., the ‘Target’ is discriminated from both 
slower and faster sounds). This allowed for the collection of 
a baseline generalization gradient.

The second task of Session 1 was an ABX task. Two 
different FM sounds were presented consecutively (A and 
B separated by 250 ms), after which a comparison sound 
(X) was presented 750  ms after the offset of B. Partici-
pants indicated whether sound X matched A or B. On each 
trial, either A or B was the ‘Target’ rate. The other was 
5.76, 6.91, 9.95, or 11.94 octaves per second. Sound X was 
always a match to either A or B. All possible combinations 
in this ABX framework were presented in equal propor-
tions within a block. Participants completed two 48 trial 
blocks (96 trials total).

The second session was the same as the first except that 
during the 1i-2AFC task, there was only one trained ‘Non-
Target’ (either 5.76 or 11.94 octaves per second). This con-
stituted directional discrimination training. Half of listeners 
were assigned to discriminate the ‘Target’ from a slower 
FM rate (5.76 octaves per second) in Session 2. Half were 
assigned a faster Session 2 ‘Non-Target’ (11.94 octaves per 
second).

Trial order within a block was randomized for all blocks 
in the experiment. Counterbalance assignments were deter-
mined randomly. For all training and ABX trials, par-
ticipants were shown the word “Correct” after a correct 
response. The word “Wrong” was shown, and a 3-s time-
out was given after incorrect responses. For probe trials, no 
feedback was given.

Networks

Figure  1 shows the employed connectionist model with 
example activations across input and hidden layer units for 
a single stimulus. Stimuli were represented by overlapping 
Gaussian activation patterns centered at different units in a 
45 unit input layer (cf. Ghirlanda and Enquist 1998; Sak-
sida 1999; Wisniewski et  al. 2012). A hidden layer repre-
sentational map was made up of 40 units, which were fully 
connected to the input layer (cf. Kohonen 1984). A single 
output unit produced a ‘Target’ response of varying strength 
based on hidden layer activations and weighted connections.

When presented with input, hidden layer units converted 
the Euclidean distance (d) between input layer activations 
and unit weight vectors to a value between 0 and 1 with 
a Gaussian activation function (g()). Hidden unit activa-
tions were then inhibited by the unit with the lowest value 
of d (i.e., the ‘winner’). A hidden unit’s final activation (aj)  
was equal to g(dj)ij. The term ij is lateral inhibition from the 
‘winner’ of the form: ij = e

−
(hj−h

∗)2

2!2 , where h* is the place of 
the ‘winner’ in the hidden layer representational map, hj is 
the place of unit j, and σ determines the width of allowed 
activation. In general, as σ increases, ij approaches 1, pro-
viding less inhibition.

The output unit summed the product of its connection 
weights and activations in the hidden layer (Σajwjk,, where 
wjk refers to the weight between hidden unit j and output 
unit k). This value was converted to output activation using 
a positive linear activation function:

Network learning

Hidden layer weights were updated using a standard 
Kohonen (1984) competitive learning rule:

Here, ! is a learning rate parameter, ai is activation of 
input unit i, and wij is the weighted connection between 
input unit i and hidden unit j.

A simple supervised learning rule was used to update 
weights between the hidden and output layer, where

ak = 0, if Σajwjk ≤ 0,

= Σajwjk, if Σajwjk > 0.

Δwij = !aj(ai − wij).
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Here, t is the desired output for a particular trial (1 for 
‘Targets’ and 0 for ‘Non-Targets’), ak is activation of the 
output unit, and δ is a learning rate parameter.

Network initialization and simulation

One-hundred networks were generated with random initial 
weights between −0.01 and +0.01. To give networks some 
hidden layer representational resolution between inputs, 
weights between the input and hidden layer were pre-
trained for 60 trials using Gaussian shaped inputs that were 
randomly selected on each trial to be centered at different 
units across the input layer (cf. Wisniewski et  al. 2012). 
During simulation of the actual experiment, the λ learn-
ing rate parameter for each network was varied randomly 
between 0.0001 and 0.1. This served to simulate different 
degrees of representational modification in the model. The 
σ parameter (spread of lateral inhibition) was fixed at 8. 
The δ supervised learning rate parameter was fixed at 0.15.

Training procedures for networks were analogous to 
behavioral training procedures, with the same amount of 
trials given to networks as humans. On each training trial, 
a stimulus was presented and weights were updated in the 
manner described above. On probe trials, weights between 
input and hidden units were updated, but weights between 
hidden and output units were frozen.

Analyses

For human participant data, counterbalance conditions (i.e., 
Session 2 ‘Non-Target’ rate assignments) were combined 
after rearranging the data to align individuals’ respective 
‘Non-Targets’ (cf. Wills and Mackintosh 1998). Stimuli 
were identified in regard to their distance from the ‘Tar-
get’ in a direction away from the Session 2 ‘Non-Target’. 
For instance, the ‘Target’ was identified as 0, the stimulus 
adjacent to the ‘Target’ and closer to the ‘Non-Target’ was 
identified as −1, and the stimulus adjacent to the ‘Target’ 
but further from the ‘Non-Target’ was +1. Generalization 
gradients were obtained by taking the proportion of over-
all responding that occurred for each stimulus during the 
last five blocks of probe trials for each session. Probe tri-
als from the initial blocks occurred at the very beginning 
of training and were hence disregarded. Modes of gradi-
ents (i.e., the peaks) were analyzed to assess peak shift. 
For example, if an individual showed a peak at the ‘Tar-
get’, the gradient mode was 0. Analyses of listeners’ ABX 
task accuracy were performed after converting proportion 
correct data to rationalized arcsine units (RAUs; see Stude-
baker 1985). Note that stimuli further displaced from the 
“Target” are likely to have scores closer to ceiling, leading 

Δwjk = !aj(ak − t).
to unequal variance compared to stimuli closer to the tar-
get. RAUs correct for this, making data appropriate for par-
ametric statistical tests (for review, see Studebaker 1985).

Simulations were analyzed analogously. The activation 
of the output unit was considered to be a network’s strength 
of ‘Target’ responding. As with humans, generalization 
gradients were obtained by averaging responses on probe 
trials of the last five training blocks. Gradient modes were 
examined to assess peak shift.

After each simulated training session, network weights 
were frozen and activations in the hidden layer were com-
pared to assess networks’ abilities to discriminate rates. 
The similarity of activations to the ‘Target’ and the other 
tested rates were assessed with Spearman’s correlations (ρ). 
To align network results with human data 1 − ρ served as 
an objective measure of ABX trial accuracy. This meas-
ure is derived from a comparison between the ‘Target’ and 
other stimuli on the dimension without the use of output 
unit weights (because humans were tested in an untrained 
task). If two different stimuli tend to activate the same hid-
den layer units (i.e., if two activation patterns are highly 
correlated), they will have a lower value (poorer accuracy).

Results

Probe trials

Figure  2a shows generalization gradients obtained from 
probe trials in Session 1 (grey dashed line) and Session 2 
(solid black line). Stimuli are labeled along the abscissa 
by their position along the rate dimension in relation to the 
‘Target’ (T) and Session 2 ‘Non-Target’ (NT2). Positive 
values indicate a stimulus further from the ‘Non-Target’. 
Negative values are closer. The generalization gradient 
from Session 1 shows a peak of “Target” responding at the 
Target, with little apparent asymmetry. In contrast, a clear 
asymmetry was observable in the gradient from Session 2. 
Response proportions were greater on the side of the FM 
rate continuum further from the Session 2 ‘Non-Target’.

A repeated-measures 7 (stimulus) × 2 (session) 
ANOVA revealed a significant main effect of stimulus, 
F(6,114) = 86.98, p < 0.001, ηp

2=0.82, confirming gradients 
of ‘Target’ responding. There was also a significant stimu-
lus x session interaction, F(6,114) = 5.02, p < 0.001, ηp

2 = 
0.21, likely attributable to Session 1 and Session 2 differ-
ences in the symmetry of generalization around the ‘Tar-
get’. Modes of individual gradients from Session 2 (Fig. 2b) 
revealed 11 individuals with shifts in gradient peak away 
from their trained ‘Non-Target’, 7 individuals with a peak 
at the ‘Target’ and only 2 individuals with a peak shifted 
towards the ‘Non-Target’. Because of a few individuals who 
had narrow gradients with no peak shift, the grand-average 
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gradient peaks at the ‘Target’. Nevertheless, one-sample 
t tests testing the hypothesis of a shift in gradient modes 
(i.e., that modes were not equal to 0) found a significant 
peak shift in Session 2, t(19) = 2.67, p = 0.015, Cohen’s 
d = 1.23. Session 1 showed no significant peak shift, t < 1. 
Similar to other works, there were large individual differ-
ences in gradient modes, but a significant asymmetry in 
the gradient peaks was observed (cf. Hanson 1959; Livesey 
and McLaren 2009; Wisniewski et al. 2014a, b).

Mean generalization gradients and gradient modes for 
networks are shown in Fig. 2c, d. Mimicking the behavio-
ral data, networks showed symmetric generalization in Ses-
sion 1, but an asymmetric gradient with greater responding 
towards stimuli shifted in a direction away from the ‘Non-
Target’ in Session 2. Analysis of network gradient modes 
also paralleled the behavioral data. Individual gradients 

appeared with both sharp peaks at the ‘Target’ and peak 
shifts (see below). A significant shift in gradient modes 
was found in Session 2, t(99) = 9.95, p < 0.001, Cohen’s 
d = 1.00, but not in Session 1, t < 1.

ABX trials

ABX trial accuracy for participants is shown in Fig. 3a, b. 
Unsurprisingly, performance was better when A and B were 
the most dissimilar (i.e., −2 and +2 show the highest accu-
racy). Indeed, a 4 (stimulus) × 2 (session) repeated-meas-
ures ANOVA revealed a significant main effect of stimu-
lus, F(3,57) = 63.80, p < 0.001, ηp

2 = 0.77. There was also 
a significant stimulus x session interaction, F(3,57) = 6.66, 
p = .001, ηp

2 = 0.26, possibly related to worsening of per-
formance for stimuli shifted away from the ‘Non-Target’ 

Fig. 2  Generalization data from probe trials in Sessions 1 and 2 
for human listeners (top; a, b) and networks (bottom; c, d). Error 
bars are omitted from the plots of generalization gradients in a and 
c for clarity. Mean standard error for human listeners was 0.014. In 

a, generalization gradients of individuals from Session 2 are shown 
as thin grey lines. Error bars are shown in graphs of gradient mode. 
*p < 0.05, ***p < 0.001
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and improvements for stimuli closer to it. Planned tests of 
whether the direction of performance changes between ses-
sions was different on opposite sides of the ‘Target’ were 
conducted by comparing Session 1 and Session 2 RAU dif-
ference scores (Session 2–Session 1) averaged for stimuli 
−2 and −1, and +1 and +2 separately (see Fig. 3b). Perfor-
mance significantly improved from Session 1 to Session 2 
for stimuli nearer the ‘Non-Target’, t(19) = 3.49, p = 0.002, 
Cohen’s d = 1.60. In contrast, performance was worsened 
for stimuli shifted in a direction opposite the ‘Non-Target’, 
t(19) = 2.99, p = 0.007, Cohen’s d = 1.37.

Network performances in the ABX tests are shown in 
Fig. 3c, d. As with human listeners, networks appeared to 
worsen in their ability to distinguish stimuli from the ‘Tar-
get’, which were shifted away from the ‘Non-Target’. They 
became better at distinguishing the ‘Target’ from stimuli 
nearer the ‘Non-Target’. Both worsening, t(99) = 5.62, 

p < 0.001, Cohen’s d = 0.56, and improvements, 
t(99) = 7.71, p < 0.001, Cohen’s d = 0.77, were significant.

Network dynamics

Network weights and activations were analyzed to examine 
how they were able to successfully simulate human behav-
ior. Figure 4a, b shows Session 2 generalization gradients 
and ABX task accuracy for two different networks. One of 
these networks (solid line) showed a peak shift in generali-
zation but comparable ABX performance on both sides of 
the ‘Target’. Patterns of activation for this network’s hidden 
units, along with that network’s output weight vectors after 
Session 2, are shown in Fig. 4c. Peak shift was produced 
by weighting representations in the hidden layer such that 
many of the units whose activities increased the strength 
of ‘Target’ responding were also those units activated 

Fig. 3  ABX test data from Session 1 and Session 2 for human listen-
ers (top; a, b) and networks (bottom; c, d). Error bars are omitted 
from a and c for clarity. Mean standard error for human listeners was 

2.99. Error bars are shown in graphs of Session 2–Session 1 differ-
ences scores. *p < 0.05, **p < 0.01, ***p < 0.001
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strongly by shifted stimuli (e.g., stimulus +1). Furthermore, 
shifted stimuli activated less strongly those units in the hid-
den layer which were given negative weighting (i.e., units 
whose activities decreased ‘Target’ response strength). As 
a result, stimulus +1 showed greater responding than the 
‘Target’. Several computational models have produced peak 
shifts in this same way (e.g., Ghirlanda and Enquist 1998; 
McLaren and Mackintosh 2002; Wisniewski et al. 2012).

Another network (dashed lines in Fig. 4a, b) showed no 
peak shift, but a sharp peak at the ‘Target’. This network 
had a relatively large λ learning rate of (0.10) for the rep-
resentational modification portion of the model’s architec-
ture. Note that in comparison with the network that showed 
peak shift, this network showed a significant modification 
of activities within the hidden layer. The activations to the 
‘Target’ and the ‘Non-Target’ separated, such that they acti-
vated mostly distinct units. In addition, representational 
space appeared to be allocated more so to these stimuli 
than to stimuli that received no training (e.g., stimulus +1). 
As a result, many units that were originally most strongly 
activated by stimulus +1 were activated most strongly by 
the ‘Target’. Output weights, by consequence, resulted in 
the strongest output to the ‘Target’.

In general, the employed connectionist model was able 
to reproduce four important aspects of the behavioral data: 
(1) a grand-average gradient that is asymmetric, but has a 
peak at the target; (2) a shift in gradient modes; (3) vari-
ability in network generalization gradients, such that some 
show a sharp peak of ‘Target’ responding at the target, but 
others shift; and (4) asymmetric acuity along the trained 
dimension in an untrained task. The goal of the current 
simulations was not to perfectly reproduce the data points 
in the behavioral data by fitting parameters, but instead was 
meant to determine whether broader behavioral patterns 
could be reproduced using a model that employs simple 
connectionist instantiations of perceptual learning pro-
cesses. Simulations were successful in regard to the latter.

Discussion

Human listeners trained to make ‘Target’ responses to a 
specific FM rate, and ‘Non-Target’ responses to either a 
slower or faster rate showed peak shifts in generalization 
along the FM rate dimension. That is, they made the great-
est proportion of ‘Target’ responses to rates shifted from the 

Fig. 4  Depictions of ‘Target’ 
generalization (a), ABX task 
accuracy (b), hidden unit activa-
tions, and output unit weights 
(c) for two different networks. 
One network (solid lines in a 
and b) showed a peak shift in 
‘Target’ generalization. Another 
network showed no peak shift, 
but strong worsening in the 
simulation of the ABX task 
(dashed lines in a and b). Hid-
den layer activations and output 
unit weights show how learning 
resulted in these different pat-
terns
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‘Target’ in a direction opposite their trained ‘Non-Target’. 
No such shifts were observable when these same listeners 
were trained to discriminate the ‘Target’ from the farthest 
ends of the tested rate dimension. In an untrained ABX 
task, directional discrimination training also led to wors-
ened discriminability between the ‘Target’ and FM sounds 
shifted opposite the ‘Non-Target’. In contrast, the ability 
to distinguish the target rate from rates nearer the ‘Non-
Target’ improved. To the author’s knowledge, this is the 
first demonstration of a worsening of acuity that parallels 
the peak shift, certainly for an auditory task. The behavio-
ral data were simulated with a simple connectionist model 
employing representational modification and task-specific 
reweighting processes of perceptual learning (cf. Petrov 
et al. 2005; Saksida 1999). Simulations showed that these 
basic learning processes, already shown to account for 
other perceptual learning results (for review, see McLaren 
and Mackintosh 2000; Mercado et al. 2001; Saksida 1999), 
are able to account for the observed asymmetries in both 
the stimulus generalization of learned responses and per-
ceptual acuities.

Relationship to previous studies of worsening

Several post-hoc speculations regarding the learning 
processes involved in worsening have been made. Simi-
lar to the cause of worsening in the connectionist model 
employed here, some have proposed that worsening results 
from representational modification, such that process-
ing resources are distorted in favor of a trained or exposed 
stimulus characteristic (e.g., Reed et  al. 2011; Hodzic 
et al. 2004; Mednick et al. 2002, 2005; Wisniewski et al. 
2014a, b). These proposals have partially been based on 
neural data showing that representational allocation to 
stimulus characteristics (e.g., the frequency of an audio 
tone) can change such that there are asymmetries relative 
to non-learning control conditions (e.g., Reed et al. 2011; 
Hodzic et  al. 2004). Others have demonstrated specificity 
of behavioral worsening effects to low-level features and 
have speculated changes in the response properties of neu-
rons in early cortical processing areas (e.g., Mednick et al. 
2005). The model provides a way to further test this inter-
pretation with new predictions. For instance, asymmetric 
changes in acuity along a dimension should be able to be 
induced after mere exposure and/or without feedback about 
accuracy. This is because worsening was a result of unsu-
pervised learning processes in the model. Furthermore, 
manipulations that affect the learning rate of representa-
tional plasticity (e.g., by stimulation of modulatory neurons 
in the basal forebrain; Miasnikov and Weinberger 2012; 
Reed et al. 2011) should affect the strength and presence of 
worsening effects. It has been well demonstrated that audi-
tory perceptual learning is accompanied by changes in the 

auditory-evoked potential in humans (e.g., Orduña et  al. 
2012; Tremblay and Kraus 2002). Potentially, representa-
tion-based asymmetries predicted by the model could be 
explored with electroencephalographic methods.

Though the current work is consistent with a represen-
tational modification based interpretation of worsening, 
reports of worsening in the literature vary largely in both 
the types of learning paradigms that induce worsening and 
the types of generalization tests that detect it. Several cases 
of worsening may not be predicted using the current model. 
Some have demonstrated worsening when task switching. 
For instance, auditory amplitude and frequency modula-
tion rate discrimination training can impair modulation 
detection (Sabin et al. 2012). Those authors have proposed 
strategy-based explanations (e.g., paying attention to rate, 
rather than presence or absence of modulation). Amitay 
et al. (2010) looked at individual differences and found that 
a significant number of participants worsened in a trained 
frequency discrimination task over the course of training. 
Similarly, Huyck and Wright (2013) found on a trained tone 
detection task that performance within and across sessions 
tended to decrease (also, see Huyck and Wright 2011). This 
worsening also generalized to an untrained condition. One 
explanation for these findings is that individuals who wors-
ened became unmotivated or fatigued (Amitay et al. 2010).

There may be several paths to worsening, such as there 
are several paths to perceptual improvements (for review, 
see Gibson 1969; Goldstone 1998). The current model 
likely cannot account for them all. In particular, the cur-
rent model has trouble mimicking worsening on a trained 
task, since different trained stimuli become more distinct 
as a result of learning in both the representational modi-
fication and representational reweighting portions of the 
model. Such behavioral results may be better explained in 
the context of fatigue and motivation. The current model 
also contains no explicit mechanisms of dimension-related 
attentional spotlighting (cf. Pashler and Mozer 2013). The 
model may have troubles accounting for some worsening 
effects seen when learners are tested on dimensions that 
were to be ignored in the training task (e.g., Sabin et  al. 
2012; Fitzgerald and Wright 2005; although see; Wis-
niewski et al. 2014a, b). Nevertheless, the model provides 
a framework wherein worsening and beneficial perceptual 
learning effects can be predicted and tested in the context 
of perceptual learning theory. Experiments designed to test 
and contrast theoretical predictions will result in a better 
understanding of worsening phenomena and more accurate 
predictions of their occurrence. For instance, predictions 
derived by the model (see above) can be contrasted with 
predictions based on strategy or motivational differences 
between conditions. It will also be useful to use the current 
model, or other similar models (e.g., McLaren and Mack-
intosh 2000, 2002; Saksida 1999), to simulate existing data 
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on worsening within a trained task (e.g., Amitay et al. 2010; 
Huyck and Wright 2011, 2013), and from detection to dis-
crimination (e.g., Fitzgerald and Wright 2005; Sabin et al. 
2012). Such simulations will provide further information 
on how far basic perceptual learning mechanisms can go in 
explaining worsening effects and whether or not favorable 
and unfavorable consequences of perceptual learning result 
from related or independent processes.

Relationship to previous studies of peak shift

In contrast to worsening, peak shift has received extensive 
study. Over a half-century of research has established it as 
a phenomenon that occurs across sensory modalities (from 
vision; Hanson 1959, to audition; Wisniewski et al. 2009, 
to proprioception; e.g.; Dickinson and Hedges 1986) and 
species (from honeybees; Andrew et al. 2014; to humans; 
e.g.; Baron 1973). However, few works have examined 
the impacts of perceptual learning on the peak shift. Wis-
niewski et al. (2010) showed in a discrimination task using 
FM sweeps that groups of participants trained for either 140 
or 180 trials showed significant peak shifts post-training. In 
contrast, groups trained for relatively few trials (60 or 100), 
or a greater amount of trials (220 or 260), failed to show 
peak shifts (cf. Terrace 1966). In another study, individ-
ual differences in learning dynamics during training were 
predictive of later shifts in generalization gradients (Wis-
niewski et al. 2014a). Individuals who learned to discrimi-
nate trained ‘Target’ and ‘Non-Target’ stimuli to an inter-
mediate degree (1 < d′ < 2) showed peak shift. Individuals 
that learned to discriminate trained stimuli to a proficient 
degree (d′ > 2) showed a sharp generalization gradient with 
a peak of ‘Target’ responding at the ‘Target’. Most learn-
ing models that predict the peak shift using computational 
instantiations of relational-based (e.g., Thomas 1993; Lynn 
et al. 2005) or associative mechanisms (e.g., Ghirlanda and 
Enquist 1998; Spence 1937) predict monotonic increases in 
peak shift as individuals become better at the trained dis-
crimination task (for review, see Wisniewski et al. 2012). In 
contrast, the simulations presented here show that networks 
learning to discriminate the trained ‘Target’ and ‘Non-
Target’ stimuli most proficiently have sharp generalization 
gradients with peaks at the ‘Target’ (see Fig. 4). Similar to 
the behavioral studies, networks with low-to-intermediate 
learning rates for representational modification did show 
shift, but networks with high learning rates did not. This 
pattern came about because representational expansion in 
the hidden layer for the ‘Target’ stimulus, and decreased 
area of representation for a shifted stimulus, allowed the 
output unit to weight units activated by the ‘Target’ with-
out excessive activation to non-target stimuli (see Fig. 3). 
Adding a process of representational modification before 
input to a simple associative output unit allowed networks 

to account for non-monotonic trends in peak shift over the 
course of learning. This trend in behavior, although well 
documented (Cheng and Spetch 2002; Terrace 1966; Wis-
niewski et al. 2010, 2014a, b), has been difficult to model 
with the standard associative learning theory (Wisniewski 
et al. 2012).

The current work adds to the repeated observations in 
examination of the peak shift effect that there can be large 
individual differences in the extent and presence of shift 
(for extended discussions, see Rilling 1977; Livesey and 
McLaren 2009; Wisniewski et  al. 2014a, b). In Hanson’s 
(1959) seminal study, only half of pigeons rewarded for 
pecks to a 550  nm light source (S+), but not to 590  nm 
(S−), showed a shift in the mode of their gradients. Simi-
larly, 11 out of 20 individuals showed a shift in the gradient 
mode in the current data set. When averaged together, gra-
dients from individuals can lead to a grand-average gradi-
ent with no apparent shift in the gradient mode (see Fig. 2), 
even when there is a statistically significant shift in the 
gradient mode (as was seen here). Both the behavioral data 
and the simulations (Fig. 3) showed this trend. The simula-
tions suggest that one reason for individual differences is 
differences in perceptual learning processes.

Other recent peak shift findings can also be interpreted 
in the context of the current data and simulations. Mias-
nikov and Weinberger (2012) paired nucleus basalis stim-
ulation in rats with presentations of a 3.66  kHz tone and 
measured the effects of tone presentations on respiratory 
behavior and tone-evoked potentials before and after pair-
ing. Interestingly, even though rats were not given explicit 
discrimination training, they showed changes in their res-
piratory responses to tones across the dimension of fre-
quency. An unpaired 2.44 kHz tone displayed an increased 
respiratory response relative to pre-pairing, showing an 
effect analogous to the peak shift. Paralleling this behavior, 
tone-evoked potentials recorded over auditory cortex were 
enhanced for low-frequency sounds (1.50 and 2.44  kHz). 
Higher frequency tones (5.49 and 8.22  kHz) showed 
decreases in response amplitude. Those authors suggested 
that representational plasticity in auditory cortex induced a 
“false memory” for the trained tone that led to the observed 
peak shift. Consistent with this interpretation, an enhanced 
hidden layer representation of an untrained sound in the 
current model would lead the associative output unit 
to activate more strongly to a shifted stimulus if the unit 
populations activated by both a ‘Target’ and shifted stimuli 
overlap to a sufficient degree.

Broader implications

The current work accents a need to understand and char-
acterize how perceptual learning may generalize in both 
favorable and unfavorable manners. If discrimination 
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training is to be indeed useful for enhancing percep-
tual performances in the real world, researchers need 
to optimize favorable while minimizing unfavorable 
consequences of training. Current research has been 
comparing the efficacy of different training regimens 
by comparing post-training performances on trained 
conditions and/or trained ranges of a perceptual dimen-
sion. For instance, Orduña et  al. (2012) trained indi-
viduals to discriminate rates of FM as was done here. 
In that study, one group of individuals gradually pro-
gressed from easy-to-hard FM contrasts in training, 
while another group trained at a fixed difficult contrast. 
Performances were better for the easy-to-hard condi-
tion on the hardest trained contrast, a result which has 
been demonstrated several times over (e.g., Church et al. 
2013; Liu et al. 2008). However, these works have only 
focused on learning effects for stimuli within a restricted 
range of the trained dimension (e.g., tests of the ability 
to discriminate a fixed rate of FM from slower rates). It 
has not been examined how different training regimens 
affect performance on a fuller range of the trained con-
tinuum (e.g., tests of the ability to discriminate a fixed 
FM rate from faster and slower rates). Given that many 
real-world perceptual problems require the use of a wide 
range of a trained dimension (e.g., voice-onset times and 
formant transition slopes for speech sounds; Sawusch 
1986), it would be useful to know how different train-
ing regimens affect worsening. Currently, most research 
into the optimization of training procedures focuses on 
improvements, and fails to explore potential worsen-
ing effects. This strategy is even more enforced by the 
use of perceptual learning definitions that refer only to 
improvements (e.g., Fahle and Poggio 2002; also see 
Mitchell 2009).

Models like the current one will be useful in expand-
ing our knowledge regarding favorable and unfavorable 
consequences of learning. One major way they can con-
tribute is through preliminary simulations of different 
training regimens. The number of possible combinations 
of training parameters is too large to feasibly test with 
subjects or participants. In contrast, it is much less time 
consuming to simulate behavior under different regi-
mens with a computer model. Simulations could be used 
to narrow down the number of training regimens to be 
tested in experiments with actual subjects/participants. 
The selection of regimens could be based both on what 
regimens show the largest differences in post-training 
performance and what regimens maximally differenti-
ate theories of the processes involved in learning (e.g., 
what conditions parse predictions made by represen-
tational modification and representational reweighting 
processes).

Conclusions

Discrimination learning affects both perceptual acuities and 
mappings of percepts to meanings and responses. Learn-
ing can cause both improvements and decrements in both. 
While many works have tried to explain generalization pat-
terns post-hoc (in the case of worsening), or have ignored 
modification of perceptual acuities in favor of modeling 
associative or relational-based learning (in the case of peak 
shift), a priori predictions derived from perceptual learn-
ing models are testable. A simple connectionist model 
of perceptual learning that incorporated non-associative 
modifications to stimulus representations (representational 
modification) and associative learning mechanisms (task-
specific reweighting) was able to reproduce worsening and 
peak shift in the current study. It can be expected that other 
models that incorporate different computational instantia-
tions of these perceptual learning processes will also gen-
erate testable predictions (e.g., McLaren and Mackintosh 
2002; Saksida 1999). Future experimental work that tests 
these predictions will lead to a fuller understanding of how 
experiences mold perceptual acuities and the generalization 
of learned behaviors and associations.
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