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Cognitive psychologists distinguish implicit, procedural category learning (stimulus-response associa-
tions learned outside declarative cognition) from explicit-declarative category learning (conscious
category rules). These systems are dissociated by category learning tasks with either a multidimensional,
information-integration (II) solution or a unidimensional, rule-based (RB) solution. In the present
experiments, humans and two monkeys learned II and RB category tasks fostering implicit and explicit
learning, respectively. Then they received occasional transfer trials—never directly reinforced—drawn
from untrained regions of the stimulus space. We hypothesized that implicit-procedural category
learning—allied to associative learning—would transfer weakly because it is yoked to the training
stimuli. This result was confirmed for humans and monkeys. We hypothesized that explicit category
learning—allied to abstract category rules—would transfer robustly. This result was confirmed only for
humans. That is, humans displayed explicit category knowledge that transferred flawlessly. Monkeys did
not. This result illuminates the distinctive abstractness, stimulus independence, and representational

portability of humans’ explicit category rules.
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Categorization is a focus of animal and human research (e.g.,
Ashby & Maddox, 2011; Feldman, 2000; Herrnstein, Loveland, &
Cable, 1976; Jitsumori, 1994; Murphy, 2002; Rosch & Mervis,
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1975; Smith, Redford, & Haas, 2008; Wasserman, Kiedinger, &
Bhatt, 1988), naturally so because it is an essential adaptation for
organizing learning and behavior. Categorization may be so es-
sential that animals have multiple complementary category-
learning systems that manage category problems of different kinds.
In fact, multiple-systems theory formalizes this theoretical pro-
posal about humans (Ashby & Ell, 2001; Cook & Smith, 2006;
Erickson & Kruschke, 1998; Homa, Sterling, & Trepel, 1981;
Nosofsky, Palmeri, & McKinley, 1994; Rosseel, 2002; Smith &
Minda, 1998). Here, we apply this proposal across species.

One multiple-systems idea distinguishes implicit-procedural
category learning from explicit-declarative category learning
(Ashby & Maddox, 2011; Ashby & Waldron, 1999; Maddox &
Ashby, 2004; Smith, Berg, et al., 2012). The implicit-procedural
system has the following characteristics. It learns gradually by
associating whole stimuli to appropriate responses. It uses pro-
cesses like those of associative learning. It uses primary reinforce-
ment systems in the brain to strengthen stimulus—response con-
nections. This implicit-procedural category “knowledge” is held
unconsciously and nondeclaratively (the implicit aspect) as a mo-
tor response skill (the procedural aspect). The explicit-declarative
system has the following characteristics. It learns by testing rules
about relevant features. It holds rules in working memory. These
rules summarize category knowledge that is typically conscious
and declarative. We note that this idea of explicit category rules is
certainly not ours alone. Over decades, many researchers have
granted rules an important role in human categorization (Ahn &
Medin, 1992; Ashby & Ell, 2001; Bruner, Goodnow, & Austin,
1956; Erickson & Kruschke, 1998; Feldman, 2000; Medin, Wat-
tenmaker, & Hampson, 1987; Nosofsky et al., 1994; Regehr &
Brooks, 1995; Shepard, Hovland, & Jenkins, 1961). In the present
article, our value added will be to consider the cognitive-
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representational character of category rules and also their species
breadth.

Explicit and implicit categorization can be differentiated using
rule-based (RB) and information-integration (II) category tasks
(see Figure 1). Each Category A stimulus (i.e., each gray square)
and each Category B stimulus (i.e., each black circle) would be
formally defined as an x, y coordinate pair within the stimulus
space. It would then be concretely presented to participants as a
bidimensional perceptual stimulus instantiating conjointly those x
and y values. The RB tasks (Figure 1a and 1c) present Category A
and Category B sets of exemplars that are fully separated along
one perceptual dimension so that a vertical or horizontal line
through the space perfectly partitions the exemplar sets. Variation
along the other perceptual dimension is irrelevant to categoriza-
tion. Participants learning in RB tasks are able to verbalize the
dimensional basis for their categorization responses because their
category knowledge is explicit and declarative (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998). The II tasks (Figure 1b and 1d)
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present Category A and Category B sets of exemplars that are
separated along the diagonals of the stimulus space. Dimensions x
and y offer partial information for categorization that must be
integrated into the category decision. Unidimensional rules (i.e.,
vertical or horizontal category boundaries) are unworkable—they
would partition the stimulus space wrongly and produce many
categorization errors. In this task, participants optimally need to
associate appropriate category responses to particular stimuli. Par-
ticipants learning II categories are not able to verbalize the basis of
their categorization responses because their learning is implicit and
procedural (e.g., see Casale, Roeder, & Ashby, 2012, Footnote 1).
We point out that in both RB and II tasks, participants never see
the whole stimulus space displayed as in Figure 1. They see single
stimuli, respond, receive feedback, and learn trial by trial.

We adopt this RB-II framework in this article for several
reasons. RB and II tasks are a constructive minimal-contrast pair in
categorization. Their categories are matched for size, class dis-
criminability (e.g., d'), within-category exemplar similarity,
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Figure 1. (a, c)Rule-based (RB) category structures illustrated, depicted within an abstract 100 X 100 stimulus

space. The gray and black symbols, respectively, indicate Category A and Category B stimuli. (b, d) Information-
integration (II) category structures, depicted in the same way. Adapted from Smith et al. (2014) by the
Association for Psychological Science. Reprinted with permission.



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

60 ZAKRZEWSKI, CHURCH, AND SMITH

between-category exemplar separation, and so forth. The tasks are
simply angular rotations of one another through stimulus space.
There is no objective a priori difficulty difference between them
(Smith et al., 2014). These tasks also show many empirical disso-
ciations—in brain imaging studies, in studies with neuropsycho-
logical patient populations, and in behavioral studies (Ashby,
Maddox, & Bohil, 2002; Ashby, Queller, & Berretty, 1999; Mad-
dox & Ashby, 2004; Maddox, Ashby, & Bohil, 2003; Maddox &
Ing, 2005).

Using these tasks, we evaluate whether monkeys performing RB
tasks possess a mental-representational analog of humans’ explicit
category rules that is abstract and generalizable. We test this by
measuring spontaneous transfer to untrained stimulus contexts for
which no direct reinforcement has ever been provided. We can
describe now the dissociation in representational abstractness that
we explored. First, responses in II tasks, conditioned by reinforce-
ment during training, should be welded to the original trained
stimuli and less transferable to new stimuli (save some transfer
through similarity-based generalization). Moreover, II (implicit)
learners should have only the ability to make stimulus-occasioned
category responses. They would lack the conscious access to their
category knowledge that might also support transfer to new stim-
uli. Second, in contrast, responses in RB tasks, if organized by a
rule maintained in working memory, should be less tied to the
original trained contexts and more transferable to new stimuli.
Moreover, because category rules are not tied by conditioning o
stimuli, but are rules about stimuli, discovered from stimuli, they
might have stimulus independence. They might have the represen-
tational form of an abstract rule that would be generalizable.

Our exploration of the transferability of implicit and explicit
category knowledge complements that in Casale et al. (2012).
They used category structures like those already shown in Figure
1. However, they broke the category sets into halves so they would
have a training task (e.g., an RB training task low in Figure 1a and
an RB transfer task high in Figure 1a). Thus, they could determine
whether category knowledge would spontaneously transfer to new
and untrained stimuli. This training—transfer methodology is de-
scribed below. Casale et al.’s stimuli were sine wave gratings that
varied in spatial frequency and in the radial orientation of alter-
nating dark and light bars within circular stimuli (spatial-frequency
and orientation, respectively, would correspond to the x and y axes
in Figure 1). In transfer, Casale et al. suddenly gave participants
100% untrained stimuli by transferring them from trained to trans-
fer stimulus distributions. Casale et al. told participants they would
be given a “new set of categories.” In their strongest experiment
(Experiment 3), Casale et al. gave no feedback in the transfer
phase. Participants were on their own. Casale et al.’s human
participants transferred RB category knowledge easily to new
stimuli but not II category “knowledge.” This transfer measure
provides a strong test of true rule knowledge that could be appli-
cable across species.

However, the Casale et al. paradigm itself applies poorly across
species. For one thing, the unreinforced transfer phase in Casale et
al.’s (2012) experiment—that works well with instructable psy-
chology students—would force macaques to perform hundreds of
unreinforced trials which in our experience they do not do. For
another thing, we worried about the 100% sudden shift in the
stimulus environment. We thought that this might engender, in
humans and/or monkeys, a qualitative reorganization of categori-

zation performance instead of a transfer of existing category
knowledge.

Our chosen paradigm addressed these issues. We presented
familiar (trained) stimuli on most trials, encouraging the continu-
ing application of existing category knowledge. We added transfer
trials quietly and occasionally with no announcement, so that
existing category knowledge would transfer spontaneously to
those trials—if it could. We kept an ongoing presence of reinforce-
ment to provide motivation and sustain performance. The periodic
reinforcement signals gave assurance that existing category knowl-
edge was still effective. The periodicity ensured that we never
directly reinforced performance on novel transfer trials, so that
new associative learning was not possible regarding these stimuli.
We thought our complementary approach was worthwhile because
it asked whether RB and II categorization, while ongoingly suc-
cessful and familiar, would still show the strong differences in
transfer that current theory predicts (Smith, Zakrzewski, et al.,
2015). Our complementary approach was also ideally suited to
monkeys because it sustained reinforcement (and task motivation)
throughout the task.

To build our paradigm, we incorporated a comparative method-
ology called deferred-rearranged reinforcement (e.g., Smith, Be-
ran, Redford, & Washburn, 2006) that has also been useful in
human research (Smith et al., 2014). Participants completed trial
blocks with no feedback. After each block, they received the
reinforcements from all the block’s correct trials together and then
the timeouts from all error trials together. By this approach, we
gave humans and monkeys periodic updates that their existing
category knowledge was successful and worth sustaining. But, we
also then had the freedom to introduce transfer trials. The sustained
category knowledge would be applied to the new stimuli—may-
be—and yet the participants would not know whether they had
answered those trials “correctly.” Thus, we could observe directly
the uninstructed transferability of RB and II category knowledge.

What might we expect to observe under these conditions? One
hypothesis is that RB and II learning would now generalize equally
poorly. This would suggest that the two forms of learning are
similar representationally (and associative in character). This
would imply that it was only a jarring wholesale change of stimuli
that gave RB learning special transfer properties in Casale et al.
(2012). Another hypothesis is that humans might continue to show
distinctive RB transfer based on true category rules, but monkeys
would not. This dissociation would demonstrate the cognitive
sophistication of humans’ category rules and show that monkeys
lack some of the abstract representational properties of true rules.

Experiment 1: Humans

Method

Participants. Ninety-five undergraduates with normal or cor-
rected vision (M,,. = 19.0 years; 48% male, 52% female) partic-
ipated to fulfill a course requirement at the University at Buffalo.
The experiment was approved by the University at Buffalo’s
Institutional Review Board. Adequate sample size for comparing
RB and II performance was determined based on previous research
(Smith et al., 2014), and a stopping rule of 15 usable participants
per task was used. Participants were placed randomly into the

RB-Vertical (RBv), RB-Horizontal (RBh), II-Major (IIM), or II-
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minor (IIm) task based on their sequential participant number.
These four tasks are shown in Figure 1. Due to performance
criteria during Phase 1 (see Procedure), several participants did not
complete the experiment in the allotted time (80 min). Following
procedures in our previous studies, these participants (three RBv,
six RBh, 19 IIM, seven IIm) were dropped. The final data set
included 60 participants, 15 in each of the four tasks.

Stimuli. The stimuli were unframed rectangles containing
green pixels presented on a black background in the computer
screen’s top center (see Figure 2). Rectangles varied in size as
follows. A rectangle’s width in pixels was given by 100 + the
value of an abstract variable called Level that could vary from 0 to
120. The rectangle’s height was equal to the width divided by 2,
rounded to the nearest integer. Rectangle size is the x-axis in
Figure 1’s abstract stimulus spaces. The stimuli were shown on a
17-in. monitor with 800 X 600 pixel resolution no dashes resolu-
tion and viewed from about 24 in. Level 60 stimuli thus subtended
a visual angle for participants of approximately 7.75°. There were
121 size levels (Levels 0—120). Stimulus boxes varied from 100 X
50 screen pixels (Level 0) to 220 X 110 screen pixels (Level 120).

The rectangles also varied in proportional pixel density. That is,
they varied in the proportion of pixels illuminated within a rect-
angle compared with the total possible pixels that could be illu-
minated within the rectangle. This variation was achieved as
follows. The proportional pixel density of the rectangles was given
by 0.05 X 1.018™"", Here, too, Level was the value of an abstract
variable that let us create a continuum of stimuli. Proportional
density is the y-axis in Figure 1’s stimulus spaces. For Level 0,
proportional density was .05, or 5% of the total possible pixels that
could be illuminated within the rectangle (e.g., 250 illuminated
pixels compared to 5,000 total possible pixels in a 100 X 50
rectangle). For Level 120, proportional density was .4253 (43% of
total pixels illuminated).

Category structures. We broke the category structures gen-
erally used in RB-II research (see Figure 1) into training and

Figure 2. A category trial, with stimulus and response options shown.
Stimulus rectangles varied in size and density, as described in subsection
Stimuli. See the online article for the color version of this figure.

transfer distributions to study participants’ transfer of category
knowledge (see Figure 3). Categories were defined by bivariate
normal distributions along the abstract size and density dimen-
sions. Individual category exemplars were chosen from these dis-
tributions using established procedures (Ashby & Gott, 1988). As
category exemplars were selected as x, y coordinate pairs in the
stimulus space, these abstract values (i.e., a 0—120 level of size and
density) were transformed into concrete stimuli with two visual
features (size, proportional density). Tables S3 and S4 (in the
online supplementary materials) contain details about the statisti-
cal distributions of the training and transfer distributions for each
experiment. For the RBv and RBh tasks, respectively, only the
dimension of size or pixel density carried information relevant to
the categorization task. For the IIm and IIM tasks, the dimensions
of size and density both carried category-relevant information. II
learning depended on mapping correct responses to particular
stimulus configurations.

In Experiment 1, as shown in Figure 3, we extended the x and
y dimensions to encompass stimulus levels O to 120. This contrasts
with the 0 to 100 stimulus ranges shown in Figure 1. The training
and transfer stimulus ellipses in Experiment 1, respectively, in-
cluded Levels 1 to 80 and 81 to 120 (or, in the case of Figure 3d,
120-40 and 40-1). There was an important reason for this 80—-40
asymmetry. The stretched-out character of the training distribu-
tions made it nearly impossible for participants to reach the train-
ing criteria in the II tasks while using a suboptimal vertical or
horizontal rule. This ensured that participants emerged from II
training with stronger learning and a more appropriate partitioning
of the categories—so then we could ascertain more sensitively the
transfer properties of that type of learning. In a preliminary exper-
iment that had training and transfer ellipses spanning 50 stimulus
levels of a 101-level stimulus space, many II participants com-
pleted training without achieving the appropriate partitioning. This
made an assessment of the transfer of “Il learning” difficult be-
cause true II learning had never been achieved. This preliminary
study is described in the online supplementary materials.

Categorization trials. Each trial consisted of a pixel box of
the chosen size and density. Below each stimulus were a central
cursor and the letters A and B to the left and right on the screen
(see Figure 2). In each trial, participants assigned the stimulus to
Category A or B by moving the cursor to the appropriate category
label. Humans used the S and L keys on the keyboard to produce
cursor movements.

Procedure. There were three phases. In Phase 1, participants
categorized stimuli presented from the training stimulus distribu-
tions only. Feedback was immediate. In Phase 2, participants
continued to categorize training distribution stimuli only, but now
with deferred-rearranged feedback given after every block of six
trials. In Phase 3, participants continued to receive deferred-
rearranged feedback. Now, a small percentage of trials presented
stimuli from the transfer distribution (i.e., transfer stimuli). These
were novel stimuli that had not been seen before. They were also
stimuli that had never received immediate reinforcement.

Phase 1 included training stimuli drawn from the 80-level (long)
ellipses in Figure 3. Feedback was always given immediately upon
response. Following correct responses, participants received a
“whoop” sound and +1 point. Following incorrect responses,
participants received an 8-s timeout accompanied by a 2-s “buzz”
sound and —1 point. Following feedback, participants’ cumulative
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Figure 3. The category structures used in Experiment 1, depicted in the same way as Figure 1. In training, all
trials presented stimuli from the (long) ellipses, which extended 80 stimulus levels, preventing participants from
using suboptimal rule-based (RB) strategies during training in the information integration (II) tasks (b, d). In
transfer, 25% of the trials presented stimuli from the (short) ellipses, which encompassed 40 stimulus levels.

points were displayed in white text. Participants had to complete
300 trials and perform above 87% correct in the most recent 60
trials. Phase 2 tested the same stimulus distributions for 96 trials.
But now participants received feedback that was deferred and
rearranged by trial outcome (hereafter, deferred feedback). After
each response, the program simply gave the next trial. At the
block’s end, the participant received their positive outcomes
grouped together (several whoops separated by 0.5 s for correct
responses), then their negative outcomes grouped together (several
buzzes paired with 4-s timeouts for incorrect responses). Their
accumulated points were updated. The next trial block followed.
Phase 3 contained 250 trials receiving deferred feedback, with
75% of the stimuli still drawn from the trained (long) stimulus
ellipses and 25% drawn from the transfer (short) stimulus ellipses.
Phase 3 began with no visible break for participants.

The session ended after 80 min or when all three phases were
completed. Those who completed all three phases were included
for analysis.

Instructions. Participants were told that they would catego-
rize pixel boxes as A or B, and that at first they would have to
guess but later would learn to respond correctly. They were told

that for correct and incorrect responses, respectively, they would
hear a whoop and earn a point, or hear a buzz, and lose a point, and
receive a timeout. Entering Phase 2, participants were told that
they would now receive their positive and negative feedback
outcomes clustered separately. They were told they would still
gain/lose points for correct/incorrect answers, so that they should
still classify accurately. Phase 3 was not delineated in any way for
participants.

Formal modeling. We fit rule-learning and procedural-
learning formal models (Maddox & Ashby, 1993) to the data for
each phase and each participant. In Phase 3, we modeled data from
the trained and transfer stimuli separately to clarify how partici-
pants’ decision strategies transferred to new regions of the stimu-
lus space. The rule-learning model assumes that participants set a
criterion on one stimulus dimension, producing a vertical or hor-
izontal category boundary. The modeling lets us specify the hor-
izontal or vertical line that would best partition the participant’s
Category A and B responses. The rule-learning model has two free
parameters: a perceptual noise variance and a criterion value on the
relevant dimension. The procedural-learning model summarizes
across the stimulus-response associations that a participant pro-
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duced to estimate a category partition that the model expresses as
a category boundary. The modeling lets us specify the line—a line
of any slope and intercept—that best partitions the participant’s
Category A and B responses. However, as we discuss in more
detail later, there is no presumption that the participant learned or
used or mentally represented this boundary. The procedural-
learning model has three free parameters: a perceptual noise vari-
ance and the slope and intercept of the decision bound.

We estimated the best-fitting values for these free parameters
using the method of maximum likelihood (details in Maydeu-
Olivares, 2017; Pan & Fang, 2002). The fitting process evaluated
which model would have created—with maximum likelihood—the
distribution of Category A and B responses that the participant
produced. Following our previous work, the best-fitting model was
chosen as the one with the smallest Bayesian Information Criterion
(BIC, Schwarz, 1978).

Results

Accuracy-based analyses. Accuracy and modeling results are
presented separately, though their combined perspective is best for
interpreting the results. Table 1 shows average proportion correct
achieved in the three phases of four categorization tasks (Phase 1:
last 100 trials, Phase 2: all 96 trials, Phase 3: trained and transfer
stimuli summarized separately from all 250 trials).

Phase 1’s learning criterion ensured high accuracy. Ending
Phase 1, proportion correct averaged .955 (SD = .053) and .886
(SD = .052) for RB and II participants, respectively. The RB
advantage is common in this research area. It supports the theo-
retical distinction drawn between II and RB learning, being con-
sistent with the idea that RB performance is protected and advan-
taged by the application of a rule.

Performance remained high in Phase 2 with deferred feedback.
Average proportion correct was now .949 (SD = .047) and .838
(SD = .068) for RB and II, respectively, with the RB participants
showing a 1% drop from Phase 1 and the II participants a 5% drop.
RB learning, more than II learning, is robust to deferred feedback,
probably because the category knowledge is held as an explicit-
verbalizable rule in working memory. All that rule needs is the
occasional signal that things are going well, and deferred feedback
provides that signal (Smith et al., 2014). Phase 2 accomplished its
goal to instantiate deferred feedback stably before introducing
transfer trials.

Accuracy-based analyses: Generalization to transfer stimuli.
Phase 3 contains the experiment’s crucial results contrasting per-

Table 1
Average Proportion Correct and Standard Deviations by Phase
and Task and by Stimulus Type in Experiment 1 (Humans)

Phase 3
Phase 1
Task (last 100 trials) Phase 2 Trained Transfer
II-major .882 (.053) .815 (.066) .762 (.100) .594 (.077)
II-minor .890 (.054) .862 (.064) .786 (.061) .608 (.110)
RB-horizontal 937 (.069) .940 (.055) .950 (.038) .910 (.082)
RB-vertical 973 (.020) 958 (.036) .970 (.035) .968 (.036)

Note. 11 = information-integration (Figure 3b and 3d); RB = rule-based
(Figure 4a and 4c). Standard deviation values are shown in parentheses.

formance on trained and transfer stimuli. We entered the propor-
tion correct of trained and transfer stimuli during Phase 3 into a
two-factor general linear model (GLM) with categorization task
(RB, II) as a between-participants factor and stimulus type
(trained, transfer) as a within-participants factor. The analysis
found a significant main effect for task, F(1, 58) = 327.551,p <
.001, my = .850, with RB proportion correct (M = .950, SD =
.056) higher overall than II proportion correct (M = .688, SD =
.123). There was also a significant main effect for stimulus type,
F(1, 58) = 62311, p < .001, m} = .518, with performance on
trained stimuli (M = .867, SD = .113) higher overall than perfor-
mance on transfer stimuli (M = .770, SD = .189). Most impor-
tantly, there was a significant Task X Stimulus Type interaction,
F(1, 58) = 38.287, p < .001, ng = .398, confirming that II
performance selectively faltered on transfer stimuli.

Two planned comparison 7 tests examined further the significant
Task X Stimulus Type interaction. When SDs differed by .02 or
more, Welch’s 7 test, robust to unequal variance, was used. First,
RB participants on average had proportions correct of .960 (SD =
.037) and .939 (SD = .069) on trained and transfer stimuli,
respectively. There were no significant differences between trained
and transfer performance in the RB tasks, Welch’s #44.595) =
2.148, p = .150, Cohen’s d = 0.357. These results confirm that the
generalization of RB category knowledge to transfer stimuli was
nearly perfect. Second, II participants on average had proportions
correct of .774 (SD = .082) and .601 (SD = .093) on trained and
transfer stimuli, respectively. There was a large and significant
drop in performance on transfer stimuli compared with trained
stimuli in the II tasks, #(29) = 8.025, p < .001, Cohen’s d = 1.476.
See the online supplementary materials for similar results from
additional analyses using arcsine square root transformations.

Model-based analyses. We fit rule-learning (x-rule, y-rule),
procedural-learning, and guessing models to participants’ last 100
Phase 1 trials, to all 96 Phase 2 trials, and separately to all trained
and transfer stimuli in Phase 3’s 250 trials. Table 2 contains details
of the modeling results. The modeling yields the best-fitting deci-
sion boundary that represents the partition between the categories
that the subject actually achieved. To be clear, this boundary
summarizes category performance. Participants may not learn this
boundary, or use this boundary, or make this boundary any part of
their category knowledge. For example, in the case of II learning,
participants learn stimulus-response associations, the correct A-B
response to many particular stimuli. This produces a category
partition that the model captures as a boundary, and that we draw
in the figures later, but this boundary has no necessary place in the
person’s category knowledge.

In Phase 1, 20 of 30 RB participants showed an appropriate
(vertical or horizontal) RB boundary and 26 of 30 II participants
showed an appropriate (major or minor) diagonal boundary. These
strategies were sustained in Phase 2, wherein 25 of 30 RB partic-
ipants were best fit by the rule-learning model and 23 of 30 II
participants were best fit by the procedural-learning model. Most
participants were able to keep applying their existing category
knowledge despite the deferred feedback.

For trained stimuli in Phase 3, the pattern of optimal decision
bounds was sustained: 28 of 30 RB participants used category
rules and 20 of 30 II participants used procedural-learning strate-
gies. The black lines in Figure 4a and 4c show the best-fitting
decision bounds for trained stimulus trials in RB tasks. It is clear
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Table 2

Best-Fitting Models for Experiment 1 (Humans): The Number of
Participants Best Fit by Each Model by Phase and Task and by
Stimulus Type in Phase 3

Best-fitting model RBh RBv 1M IIm
Phase 1 (last 100 trials)

x-Rule — 11 — —

y-Rule 9 — 2 2

Integration 6 4 13 13

Guessing — — — —
Phase 2

x-Rule — 12 — —

y-Rule 13 — 4 3

Integration 2 3 11 12

Guessing — — — —
Phase 3 (trained)

x-Rule — 15 — —

y-Rule 13 — 5

Integration 2 — 9 11

Guessing — — 1 —
Phase 3 (transfer)

x-Rule — 14 3 4

y-Rule 14 — 6 8

Integration 1 1 1 1

Guessing — — 5 2
Note. RBh = rule-based horizontal; RBv = rule-based vertical; IIM =

information-integration major; IIm = information-integration minor. Num-
bers indicate number of participants best fit by each model.

that the performance of almost all participants reflected appropri-
ate y-rule boundaries (for RBh) and x-rule boundaries (for RBv).
The black lines in Figure 4b and 4d show the best-fitting decision
bounds for trained stimulus trials in II tasks. These bounds re-
flected appropriate associative-learning strategies by most partic-
ipants for the trained range of stimuli.

The gray lines in Figure 4 show the experiment’s crucial result.
The gray lines in Figure 4a and 4c show that for RBh and RBv
participants, performance was consistent with an extension of
appropriate y and x rules to transfer stimuli under deferred rein-
forcement. The extension was nearly perfect, and applied to the
performance of all but two participants. But extension did not
apply at all to II performance. Indeed, all but two participants
reverted to suboptimal strategies, including substituting vertical
and horizontal decision boundaries, guessing, and responding with
extreme bias (gray lines, Figure 4b and 4d). The modeling results
provide converging support to our accuracy findings.

We also analyzed participants whose best-fit model revealed a
task-appropriate boundary for the trained stimuli presented in
Phases 1, 2, and 3. We did this to test whether our results were
somehow driven by participants who used suboptimal strategies
through the experiment. In II tasks, 17 individuals had a diagonal
decision boundary through the whole experiment for trained stim-
uli. However, there was still an enormous difference between
proportions correct on trained stimuli (M = .823, SD = .052) and
transfer stimuli (M = .624, SD = .090) in Phase 3, Welch’s
#(25.774) = 62.450, p < .001, Cohen’s d = 1.930. Judging by this
poor performance on transfer stimuli, even stable II participants
failed to extend their decision bounds to the transfer region of the
stimulus space.

In the RB task, 19 individuals sustained an appropriate best-fit
rule-learning model through the whole experiment on trained

stimuli. There was no significant difference in their proportions
correct in Phase 3 on trained stimuli (M = .970, SD = .027) and
transfer stimuli (M = .959, SD = .036), 1(18) = 1.214, p = 241,
Cohen’s d = 0.282. Judging by their excellent performance on
transfer stimuli, these participants did extend their optimal deci-
sional bound to the transfer stimuli included in Phase 3.

Figure 5 shows decision bounds for trained and transfer stimuli
during Phase 3 for those who maintained appropriate strategies for
trained stimuli in all three phases, depicted in the same way as
Figure 4. Of the 19 participants in the RB tasks who sustained
appropriate unidimensional strategies during trained stimuli
throughout the experiment, nine were in the RBv task (Figure 5a)
and 10 were in the RBh task (Figure 5c). Of the 17 participants in
IT tasks who sustained appropriate II strategies during trained
stimuli throughout the experiment, seven were in the IIM task
(Figure 5b) and 10 were in the IIm task (Figure 5d).

The black lines in Figure 5 necessarily show task-appropriate
boundaries because Figure 5 only includes participants whose
best-fit model revealed a task-appropriate boundary for the trained
stimuli presented in Phases 1, 2, and 3. The gray lines in Figure 5,
on the other hand, show strategies during transfer stimuli in Phase
3 for these stable strategy users. The gray lines in Figure 5a and 5c
show that all but one of these RB participants extended the
appropriate x- and y-rule boundaries to transfer stimuli under
deferred reinforcement. Like to the rest of the RB participants,
they did so nearly perfectly. But, none of the Il participants who
were stable strategy users extended their diagonal decision bound-
aries successfully (Figure 5b and 5d). These results show that even
for the most stable II learners in our experiment, II learning was
welded to the original learning contexts, disallowing its extension
to transfer stimuli. But for the stable RB learners, transfer was
immediate, flexible, and flawless.

Experiment 2: Monkeys

Method

Experiment 2 replicated Experiment 1 with two rhesus mon-
keys. Some small methodological adjustments are described now.

Subjects. Male macaques (Macaca mulatta) Murph and Obi
(23 and 13 years old, respectively) were tested. They had been
trained, as described elsewhere (Washburn & Rumbaugh, 1992), to
respond to computer-graphic stimuli by manipulating a joystick.
They had participated in previous computerized experiments (Be-
ran, Evans, Klein, & Einstein, 2012; Beran, Perdue, & Smith,
2014; Beran & Smith, 2011; Smith, Beran, Crossley, Boomer, &
Ashby, 2010). Macaques were tested in their home cages at the
Language Research Center (Georgia State University), with ad
libitum access to the test apparatus, working when they chose to
during long sessions. They had continuous access to water. They
worked for fruit-flavored primate pellets. They received a daily
diet of fruits and vegetables independent of task participation, and
thus, they were not food deprived for the purposes of the experi-
ment. This study complied with approved Georgia State University
Institutional Animal Care and Use Committee protocols.

Murph was a subject in Smith et al.’s (2015) study, which used
methods like those used here. Specifically, both tasks used un-
framed pixel box stimuli with identical size and pixel density
levels, described later in subsection Stimuli. However, in the study
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Figure 4. Decision bounds fitting Phase 3 trial responses for trained (black lines) and transfer (gray lines)
stimuli in the (a) vertical rule-based (RB) task, (b) the major-diagonal information-integration (II) task, (c) the
horizontal rule-based task, and (d) the minor-diagonal information-integration task. Participants with a best-fit

model of guessing are not included in the figure.

by Smith et al. (2015), Murph’s stimuli were green (in his RB task)
and light red (in his II task). Here, Murph’s stimuli were light blue
(in his RB task) and yellow (in his II task). In Smith et al. (2015),
Murph began with a RBv task in which the relevant dimension was
size (x-axis). Category A was smaller and Category B was larger.
During training, 100% of trials sampled stimuli from the bottom
half of the y-dimension (density). At transfer, there was a sudden
100% shift to all transfer trials, which sampled stimuli from the top
half of the y-dimension (density). Murph’s second and final task in
the study by Smith et al. (2015) was IIM. The A and B ellipses
were switched and rotated to a 45° angle so that no transfer of
knowledge from his previous RBv task could occur. During train-
ing, Murph was presented with stimuli from A and B ellipses on
the lower/bottom half of both x (size) and y (density) dimensions.
At transfer, 100% of all trials were sampled from the upper/top
half of both x (size) and y (density) dimensions.

Four months and 16 days passed between the end of Murph’s
(IIM) transfer task in Smith et al. (2015) and the beginning of his
(RBh) training in the present study. Here, Murph began with an
RBh training task in which the relevant dimension was pixel box
density (y-axis). Category A stimuli were denser and Category B
stimuli were sparser. During training, 100% of trials sampled
stimuli from the lower half of the x-dimension (size). At transfer,
10% of all trials sampled stimuli from the upper half of the
x-dimension (size). Here, the transfer trials were introduced quietly

and unobtrusively within ongoing performance, instead of a sud-
den 100% shift to all transfer trials. Murph’s second task in the
present study was IIm. As before, the A and B ellipses were
switched and rotated to a 45° angle. However, unlike the IIM task
in Smith et al. (2015), during IIm training here, 100% of trials
sampled stimuli from the upper half of the x-dimension (size) and
lower half of the y-dimension (density). At transfer, 10% of all
trials were sampled from the top half of the y-dimension (density)
and bottom half of the x-dimension (size).

No knowledge could be carried from previous tasks into the
present tasks. Murph’s final task in Smith et al. (2015) was IIM
(100% of stimuli from the transfer distribution) and his first task in
the present study was RBh (100% of stimuli from the training
distribution), again leaving no room for savings in learning. Fi-
nally, regardless of task or stimuli, Murph in Phase 1 had to prove
his learning up to a 95% level, ensuring that the crucial manipu-
lations of the experiment did not begin until he joined Obi at the
same level of task mastery.

Small-sample primate research in comparative psychology.
Experiment 2 typifies an experimental approach in comparative
psychology that conducts an intensive investigation with a small
number of animal participants. Here, the two monkeys completed
276,515 trials over two years to produce the experiment’s data.
Small-sample research has played a crucial role in comparative
psychology’s empirical success and theoretical development. It has
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Figure 5. Decision bounds for trained (black lines) and transfer (gray lines) stimuli during Phase 3 for the 36
participants who had appropriate decision bounds for trained stimuli in all three phases, depicted in the same way
as Figure 4. Participants with a best-fit model of guessing are not included in the figure. RB = rule-based; I =

information-integration.

anchored the fields of ape language (Savage-Rumbaugh, 1986),
parrot cognition (Pepperberg, 1983), dolphin language (Herman &
Forestell, 1985), ape conceptual functioning (Boysen & Berntson,
1989), ape theory of mind (Premack & Woodruff, 1978), self-
awareness (Gallup, 1982), animal metacognition (Smith et al.,
1995), and other fields, too. Small-sample research serves espe-
cially well when an investigation is trial-intensive, when it has
complex stages of testing, and when it involves a novel and
difficult-to-train regimen of reinforcement. All of these factors are
present in the current experiment. In similar situations, it is fre-
quently adopted in human research, too (Kreutzer, Leonard, Fla-
vell, & Hagen, 1975). It is especially prominent in studies of
psychophysics. So, we believe that this research approach was well
suited to the present investigation. We also believe that small-
sample research will continue to play an important role in cogni-
tive and comparative psychology—indeed, it may be a necessary
way of the future. As the pressure increases to minimize the
captive animals used in research, it may allow animal participants
to still offer their profoundly important cognitive-science insights
while encouraging researchers to design projects sensitively and

delicately. In this way, we can maximize beneficence, minimize
our research “footprint,” and adapt well to the present scientific
environment.

Stimuli. There were 101 size levels (Levels 0—100). Stimulus
boxes varied from 100 X 50 (Level 0) to 200 X 100 (Level 100).
There were also 101 density levels. For Levels 0 and 100, respec-
tively, proportional density was .05 and .2977 (5% and 30% of
total pixels illuminated). Obi’s II and Murph’s RB tasks used
light-blue stimuli. Obi’s RB and Murph’s II tasks used yellow
stimuli. We changed stimulus color between RB and II tasks to
lessen task confusion. Stimulus color remained the same through
all three phases of each task. The use of 101 stimulus levels
followed on previous II-RB research with animals. It also seemed
appropriate for this reason. Monkeys’ “category-rule” system is
likely less cognitively intrusive and dominant than that of humans,
so monkeys need less the extra insulation against adventitious
rules that humans require.

Category structures. The training and transfer stimulus el-
lipses, respectively, included Levels 0 to 50 and 51 to 100 (see
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Figure 6). We closely monitored Murph and Obi’s performance
during training to ensure that both monkeys’ performance reflected
the appropriate diagonal decision strategy in the II task before the
next phase. This monitoring was not so easily done with humans,
who completed all three phases within one experimental session.
This is another reason why humans were given insulating 80-level
training ellipses that discourage adventitious rules.

Categorization trials. The trials were presented just as for
humans. The macaques controlled a white cursor on the screen
with their joystick, moving it to make categorization responses.
For each trial, they also had to move this cursor (using appropriate
joystick guidance) to touch the stimulus as an observing response
that produced the response icons and allowed a categorization
response. This was their trial start response documenting their trial
readiness.

Procedure. Murph and Obi completed both RB and II tasks,
with three phases in each task. We counterbalanced the order of
RB and II tasks, with Murph starting with the RB task and Obi
starting with the II task. If either monkey used knowledge from the
previous task, they would perform poorly. Each phase began with
no warning. Phase 1 included training stimuli drawn from the
training ellipses in Figure 6. Feedback was always given immedi-
ately upon response. Following correct responses, monkeys re-
ceived a “whoop” sound and a pellet. Following incorrect re-
sponses, participants received a 20-s timeout accompanied by a 2-s
“buzz” sound. In the RB task, Murph completed 2,881 trials and
Obi completed 6,417 trials. Both monkeys’ performance accuracy
exceeded 95% correct in their last 1,000 trials. In the II task,
Murph completed 26,292 trials and Obi completed 32,201 trials.
Both monkeys’ performance accuracy exceeded 95% correct in
their last 1,000 trials.

In Phase 2, monkeys were gradually introduced to deferred-
rearranged feedback, with blocks of two, three, four, five, and six
trials. That is, now at the end of a block of trials, monkeys received
their positive outcomes grouped together (e.g., several whoops
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separated by 1 s for correct responses) and then their negative
outcomes grouped together (e.g., several buzzes paired with 20-s
timeouts for incorrect responses). We still tested only the trained
stimuli but now gradually deferred feedback as performance re-
mained above 85% correct measured across segments of 20 trials.
When Phase 2 began, there was a 100% chance that only one-trial
blocks (immediate feedback) would be presented. When perfor-
mance exceeded 85% correct, the chance that a two-trial block
would be presented increased by 1% (out of 100%) on every trial
until there was a 100% chance that two-trial blocks were pre-
sented. Then, the chance of three-trial blocks began at 1% and
increased to 100%, as long as performance remained above 85%
correct. This ramping continued until the animals reached six-trial
blocks of deferred feedback. This allocation prevented monkeys’
performance from crashing in response to an abrupt change in
feedback. Obi had trouble remaining above 85% correct after
reaching six-trial blocks. This may have been due to some forget-
ting between sessions. To help him recover, we allowed the Phase
2 program in RB and II tasks to ramp backward to smaller trial
blocks (from six to one) when he performed below 85% correct. In
the RB task, Murph completed 11,171 trials and Obi completed
7,603 trials. We ended RB Phase 2 when each monkey performed
above 95% across 2,000 trials with six-trial block feedback only.
In the II task, Murph completed 15,321 trials and Obi completed
75,496 trials. Both monkeys performed at 90% correct or better
(Murph was 93% correct and Obi 90% correct) in the last 1,000
trials with six-trial block feedback only.

In Phase 3, all trials were fully deferred-rearranged, with feed-
back occurring only after six trials. Now, there was a 10% chance
that trials would present stimuli from the transfer distributions (see
Figure 6). In the RB task, Murph completed 46,993 trials and Obi
completed 7,320 trials. In the II task, Murph completed 29,298
trials and Obi completed 15,522 trials. We focused our analysis on
the start of Phase 3, so as to evaluate equivalently how each
monkey performed on trained compared with transfer stimuli.
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Figure 6. The category structures used in Experiment 2, depicted in the same way as Figures 1 and 3. Murph
and Obi completed both rule-based (RB) horizontal and information integration (II) minor tasks. In training, all
trials presented stimuli from half of the stimulus space (left pair of stimulus ellipses in the RB horizontal task;
bottom pair in the II minor task). In transfer, 10% of the trials presented stimuli from the other half of the
stimulus space (right ellipses in the RB horizontal task; top ellipses in the II minor task).
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Table 3
Proportion Correct by Phase and Task and by Stimulus Type in
Experiment 2 (Monkeys)

Phase 3
(first 100 trials)
Phase 1 Phase 2 R
Task (last 100 trials) (last 100 trials) Trained Transfer
Murph
RB-horizontal 93 .88 .90 .56
II-minor .93 95 .83 .63
Obi
II-minor .99 93 .83 .63
RB-horizontal .99 .89 .89 .64

Note. RB = rule-based (Figure 6a); II = information-integration (Figure
6b). Performance is presented in the order that each monkey received RB
and II category tasks (order was counterbalanced between subjects).

Results

Accuracy-based analyses. Table 3 shows proportion correct
achieved in the three phases of RB and II categorization tasks by
both monkeys. To see how monkeys performed over the course of
the experiment, see the online supplementary materials (Figures
S4-S7) for proportion correct throughout each phase. Task order
was counterbalanced, with Murph starting with the RB task and
Obi starting with the II task.

Like Experiment 1, we ensured performance in Phase 1 ended
with high accuracy and appropriate decision bounds. Ending Phase
1 in the RB task, Murph and Obi showed proportions correct of .93
and .99, respectively. Ending Phase 1 in the II task, performance
was the same for each monkey: .93 and .99 for Murph and Obi,
respectively. Each monkey ended categorization of training stimuli
with immediate feedback at the same level for both II and RB
tasks.

Performance at the end of Phase 2 remained high with deferred
feedback. Proportion correct for the end of Phase 2 was .88 (RB)
and .95 (II) for Murph and .89 (RB) and .93 (II) for Obi. Monkeys
were well matched at the end of Phase 2. Murph and Obi’s
performance differed only by 1% in the RB task and by 2% in the
II task.

Table 4

Accuracy-based analyses: Generalization to transfer stimuli.
Phase 3 contains the experiment’s crucial results contrasting per-
formance on trained and transfer stimuli. In the RB task, the
proportion correct for the first 100 trained stimuli was .90 (Murph)
and .89 (Obi), but the proportion correct for the first 100 transfer
stimuli was .56 (Murph) and .64 (Obi). To statistically compare
performance with trained and transfer stimuli for each monkey, we
used McNemar’s test, which is a nonparametric test that is used to
assess the significance of the difference between two paired bino-
mial data sets (McNemar, 1947). McNemar’s test confirmed that,
in contrast to humans in Experiment 1, there was a significant
difference in the RB task between performance on trained and
transfer stimuli for both Murph, p < .001 (two-tailed), odds ratio
(OR) = .493, 95% confidence interval (CI) [.361, .666], and Obi,
p < .001 (two-tailed), OR = .600, 95% CI [.444, .805]. See the
online supplementary materials for similar findings with additional
analyses using arcsine square root transformations. This result
draws a crucial distinction between humans’ and monkeys’ ability
to generalize RB category knowledge to transfer stimuli under
deferred feedback.

It is crucial to see that the findings presented here are not in any
way a null result. These collapses of performance with transfer
stimuli occurred amid obviously successful training, high levels of
task mastery, highly accurate ongoing performance, and so forth.
The result is a striking and significant contrast between perfor-
mance with trained and transfer areas of the stimulus space, a
positive result concerning the difference in performance level
achieved on trained and transfer stimuli.

In the II task, the proportion correct for the first 100 trained
stimuli was .83 for both Murph and Obi. They were well matched
in their trained stimulus performance on this task, too. The pro-
portion correct for the first 100 transfer stimuli was .63 for both
Murph and Obi. McNemar’s test showed that the two proportions
were significantly different, p = .006 (two-tailed), OR = .667,
95% CI [.496, .892], for both Murph and Obi. See the online
supplementary materials for similar findings with additional anal-
yses using arsine square root transformations. This failure to
transfer II category knowledge under deferred reinforcement is
consistent with results found in humans (Experiment 1) and in

Best-Fitting Models for Experiment 2 (Monkeys): Best-Fitting Model, Bayesian Information Criterion (BIC) Score, and Percent
Responses Accounted for Are Shown by Phase and Task and by Stimulus Type

Phase 3 (first 100 trials)

Phase 1 Phase 2
Task (last 100 trials) (last 100 trials) Trained Transfer
Murph
RB-horizontal y-Rule y-Rule y-Rule Guessing
(BIC = 55.5, 93% fit) (BIC = 50.6, 90% fit) (BIC = 59.5, 90% fit) (BIC = 98.9)
II-minor Integration Integration Integration x-Rule
(BIC = 55.5, 94% fit) (BIC = 44.6, 95% fit) (BIC = 102.4, 84% fit) (BIC = 67.13, 89% fit)
Obi
II-minor Integration Integration Integration x-Rule
(BIC = 23.8, 98% fit) (BIC = 58.8, 93% fit) (BIC = 74.6, 84% fit) (BIC = 71.6, 89% fit)
RB-horizontal y-Rule y-Rule y-Rule y-Rule

(BIC = 22.7, 99% fit)

(BIC = 65.6, 90% fit)

(BIC = 78.0, 87% fit)

(BIC = 59.4, 88% fit)

Note. RB = rule-based (Figure 6a); Il = information-integration (Figure 6b). A large percent of the responses accounted for by the model indicates that
the subject applied this decisional strategy consistently so that the model fit his performance closely.
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humans and monkeys under immediate feedback (Smith et al.,
2015).

Model-based analyses. We fit rule-learning, procedural-
learning, and guessing models to each monkey’s last 100 Phase 1
trials, last 100 Phase 2 trials, first 100 Phase 3 trained stimuli, and
first 100 Phase 3 transfer stimuli for RB and II tasks. Table 4
shows the best-fitting model by monkey, by task, by phase of the
experiment, and by stimulus type within Phase 3 of the experi-
ment.

Murph: RB task. For the last 100 Phase 1 trials in the RB
task, modeling indicated a RB decision strategy placed optimally,
near the center of the y-axis (51.4). Murph’s RB strategy continued
in Phase 2 and the first 100 trained stimuli in Phase 3 (Figure 7a—c,
black lines). However, for the first 100 transfer stimuli in Phase 3,
the best-fit model was biased guessing. Murph called a majority of
transfer stimuli “A,” failing to extend his RB boundary to novel
stimuli under deferred feedback (Figure 7c). In the case of best fit
by the biased guessing model, because Murph may have just
guessed trial by trial, no decision boundary can appropriately be
drawn on Figure 7c.

Murph: II task. For the last 100 Phase 1 trials in the II task,
modeling indicated a diagonal decision bound with a slope
of —0.53 (Figure 7d). Murph’s II strategy barely changed in Phase

2 (slope = —0.44; Figure 7e). For the first 100 trained stimuli in
Phase 3, Murph’s decision bound had a slope of —0.79 (Figure 7f,
black line). However, for the first 100 transfer stimuli in Phase 3,
the best-fit model was a unidimensional decision strategy placed at
58.8 on the x-axis (Figure 7f, gray line). Once again, Murph called
a majority of the transfer stimuli “A.” He failed to generalize his
II decision boundary to new stimuli under deferred feedback. This
is not surprising given that Murph was unsuccessful in generaliz-
ing II strategies to novel stimuli even under immediate feedback
(Smith et al., 2015).

Obi: II task. For the last 100 Phase 1 trials in the II task,
modeling indicated a diagonal decision bound with a steep slope
of —2.54 (Figure 8a). Obi’s II strategy was sustained in Phase 2,
with a best-fitting diagonal decision bound that flattened to a slope
of —0.44 (Figure 8b). For the first 100 trained stimuli in Phase 3,
Obi’s decision bound had a slope of —1.65 (Figure 8c, black line).
However, like Murph, Obi failed to extend this diagonal decision
boundary (Figure 8c, gray line). The best-fit model for the first 100
transfer stimuli in Phase 3 was unidimensional on the x-axis. Like
Murph, Obi called a majority of the transfer stimuli “A” (Figure
8c).

Obi: RB task. For the last 100 Phase 1 trials in the RB task,
modeling indicated a RB decision bound placed optimally at 49.4 on
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Figure 7. Murph’s A (gray) and B (black) responses and decision bounds during three phases in rule-based
(RB; a—c) and information-integration (II; d—f) tasks. In Phase 1, responses for the last 100 trials are shown (a,
d). In Phase 2, response for the last 100 trials are shown (b, e). In Phase 3, responses for the first 100 trained
and first 100 transfer trials are shown (c, f). Decision bounds for trained (black lines) and transfer (gray lines)
stimuli are depicted as they were in Figures 5 and 6 for humans.
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Figure 8. Obi’s A (gray) and B (black) responses and decision bounds (training: black lines; transfer: gray lines)
during three phases in rule-based (RB; a—c) and information-integration (II; d—f) tasks, depicted as in Figure 7.

the y-axis (Figure 8d). Obi’s RB strategy continued and his boundary
on the y-axis barely moved in Phase 2 (Figure 8e) and the first 100
trained stimuli in Phase 3 (Figure 8f, black line). For the first 100
transfer stimuli in Phase 3, the best-fit model remained unidimen-
sional on the y-axis; however, as Figure 8f (gray line) illustrates, the
decision bound was far too high on the y-axis, at 68.2. Obi also
showed a nearly complete response bias on the transfer stimuli. Given
the dominant result, it is immaterial whether the modeling algorithm
produced a horizontal or a sloped decision boundary. As already
shown, accuracy-based analyses confirmed a significant drop in per-
formance on these transfer stimuli (63% correct) compared with
trained stimuli (83% correct) in Phase 3.

General Discussion

We asked whether RB category knowledge has a different
representational character that makes it less associative and more
transferable. As expected, humans’ and two macaques’ II category
learning did not transfer under deferred feedback, with accuracy
falling 17% for the humans and 20% for each macaque. II category
learning is entrained to specific stimuli and lacks a stimulus-
independent aspect that bridges to new stimuli. This finding sup-
ports the current neuroscience description of II learning as the
striatal binding of cortical inputs to response outputs. By that

description, only trained cortical representations should strongly
elicit appropriate responses.

Moreover, many participants made no pretense of transferring
their II learning. Instead, they managed transfer under deferred
feedback by seemingly implementing nonoptimal, adventitious
rules. By this we mean only that they produced model fits showing
vertical or horizontal decision bounds that were not appropriate to
the II (diagonal) category structure. It is intuitive that when cortical
inputs fail to activate a response, as with transfer stimuli, the
cognitive system would require a secondary strategy. This might
well take the form of the inappropriate rules we seemed to observe.

In contrast, RB category knowledge easily transferred—for hu-
mans. Humans” RB category knowledge has abstract and portable
representational content. Probably, it is encoded as a declarative rule
held in working memory. Such a rule would not be welded to trained
stimuli but freely applicable to transfer stimuli. Macaques did not
show this distinctive RB transfer. Their decision bounds were optimal
for the training stimuli, even with deferred feedback. However, when
transfer stimuli were presented, their strategies collapsed. They lacked
portable “rules” to apply to transfer stimuli. The results demonstrate a
distinctive species difference in the character of RB knowledge across
species and a limitation on monkeys’ capacity to entertain explicit
category rules as humans do.
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This result converges with that in the study by Smith, Minda,
and Washburn (2004). They surveyed broadly monkeys’ and hu-
mans’ categorization abilities (also Shepard et al., 1961). Humans
clearly learned explicit category rules in the tasks that afforded
rules. They learned RB tasks especially easily, performed them
especially accurately, and learned them in an insightful moment of
rule discovery. Monkeys did not.

Combined, the results here and in the study by Smith et al.
(2004) could suggest that monkeys lack the cognitive capacity for
the explicit category rules that humans use fluently. However,
complexities have emerged in other studies that recommend a
more nuanced interpretation.

One complexity is that Smith et al. (2010) found that macaques
do differentiate RB and II category tasks. They learn RB tasks
faster and to higher accuracy levels than they do II tasks, as
humans do. This cross-species result is shown in Figure 9. Smith,
Crossley, et al. (2012) extended this observation to a New World
primate species (capuchin monkeys, Cebus apella). These results
might suggest that monkeys share some—but not all—aspects of

d Humans

1 "umﬁw.q—_mu RB 1

o
©
|
]
N

4
©
N

.

Proportion Correct
=] o
2 X

e
b

04 T T T T T 1

0 100 200 300 400 500 600
b Humans Trial Number
1 7] o

s o T w TP pag, RB2

0.9,
ost A asdian dadiy b g
§0.8— TN LYY i S

"
At

5 0.7 ‘Aﬂf‘
£ A
2
0 0.6,
a

0.5

0.4 T T T 1

I I
0 100 200 300 400 500 600
Trial Number

Figure 9. (a) Proportion of correct responses in each
of a rule-based (RB) and information-integration (II)

humans’ explicit rule learning capability, enough so that dimen-
sional category rules are advantaged in learning (Smith et al.,
2010; Smith, Crossley, et al., 2012) but not enough so that rules
become portable in transfer (present results).

However, one might suggest instead that unidimensional RB
tasks are inherently simpler to learn associatively so that almost
any learning system would show this advantage. This inherent-
simplicity argument fails, though. Smith et al. (2011) showed that
pigeons are indifferent to the RB or II rotation of the category task
in stimulus space. Unlike humans and monkeys, they learn both
tasks equally quickly to the same level.

Or, one might suggest that the learning advantage for RB tasks
only needs a low-level attentional process to focus on the relevant
dimension. This attentional argument also fails. This argument
would grant a selective attention mechanism to macaques but not
to pigeons, discomfiting many who study birds and who observe
their ability to change attentional focus (discussion in Pearce,
Esber, George, & Haselgrove, 2008; Smith et al., 2011). Moreover,
if selective attention powered the RB learning advantage for mon-
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responses in each 10-trial block for 30 humans who performed 600 trials of an II and RB category task in that
order. (c) Proportion of correct responses in each 100-trial block for three monkeys who performed 6,000 trials
of a RB and II category task in that order. (d) Proportion of correct responses in each 100-trial block for three

monkeys who performed 6,000 trials of an IT and RB

category task in that order. Adapted from Smith et al.,

(2010) by the American Psychological Association. Reprinted with permission.
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keys, then they would easily have transferred that attentional focus
to the transfer stimuli in the present tasks. Given selective attention
to the relevant dimension, there would not even be “trained” and
“transfer” stimuli. There would effectively only be, for example,
sparse and dense stimuli. In this respect, our results pose a mystery
about selective attention and rules in categorization. We need to
explain why macaques’ attentional focus that gives them an RB
performance advantage (Smith et al., 2010) applies only to the
edge of the training-stimulus distributions. How is it that attention
is welded to the range of familiar stimuli? How is that an atten-
tional focus? What have humans done to break that weld? And is
breaking that weld the thing that grants humans the flexible use of
true category rules, setting them apart from other species?

Another complexity is that Smith et al. (2015)—similar to the
present study—asked macaques to transfer their RB and II cate-
gory knowledge to new regions of the stimulus space. However, in
the study by Smith et al., the novel stimuli arrived suddenly as
100% of stimuli and trial-by-trial reinforcement continued un-
abated, so that each new stimulus received immediate, veridical
feedback and learning commenced immediately. Note that this use
of continuous veridical reinforcement is different from other trans-
fer studies in which transfer stimuli would be nondifferentially
reinforced. In the case of continuous reinforcement, both species
showed impaired II transfer, suggesting that II learning is condi-
tioned by and yoked to its trained stimulus contexts. The II result
for both species is just like that found here. RB transfer was
seamless for humans, also as found here. But RB transfer was
seamless for the macaques, too, a very different result from that
found here. It is also a matter of theoretical interest that RB
learning transfers to new stimuli almost instantaneously when
supported by immediate reinforcement, but transfers poorly when
unsupported by immediate reinforcement.

Thus, humans show a suite of cognitive phenomena that com-
pose their mature and dominant capacity for explicit-declarative
categorization. They learn RB tasks fast to high levels (Smith et
al., 2010). They transfer category rules instantaneously to novel
stimuli when immediate feedback is given every trial (Smith et al.,
2015). They transfer category rules spontaneously to novel stimuli
even when reinforcement is deferred so that reinforcement credit
cannot be assigned to individual stimulus—response pairs (present
data). They learn RB categories by insightful discovery (Shepard
et al., 1961; Smith et al., 2004). They hold category rules in
working memory and declare them verbally (Casale et al., 2012).

In contrast, the existing results suggest that macaques could be
a transitional form. They show the first three of these RB phe-
nomena—fast learning, highly accurate performance (Smith et al.,
2010), and seamless transfer given continuous trial-by-trial rein-
forcement (Smith et al., 2015). Pigeons do not (Smith et al., 2011).
We interpret this data pattern to suggest that macaques’ cognitive
systems lie near the threshold for achieving true RB categorization.
They transcend low-level selective attention. They bring some
more advanced dimensionally analytic information process to bear
on RB tasks. But they do not bring to bear all the explicit cognitive
processes that humans do. And so, our goal is to titrate this
threshold, so as to understand more clearly the emergence of
humans’ explicit cognition and to understand more clearly pri-
mates’ cognitive constraints.

One theoretical possibility is that humans’ ultimate rule capa-
bility is afforded by our distinctive use of abstract symbols and by

our expression of them linguistically and propositionally (e.g., the
As are sparse). In this case, macaques would never produce the RB
performances that humans do. This would be an important con-
clusion about species differences in cognition and about the fitness
considerations that fostered the evolution of explicit, declarative
cognition.

However, another theoretical possibility is that humans’ pre-
frontal cognitive system is more mature, advanced, and dominant
in cognition and more active in searching for RB solutions to tasks.
This would explain why humans discover rules insightfully and
why humans spontaneously extend RB category knowledge to
transfer stimuli. It is possible that a cognitive system could exist
with a dominant, active, exploratory capacity that might show
human-like rule use, even if that system had no abstract symbols,
or declarative rules, or verbal language. Of course, this possibility
is a thought experiment that itself raises important theoretical
questions. Do humans do what they do because they are linguistic
and propositional or do they describe linguistically and proposi-
tionally what their prefrontal cortical system does anyway, lan-
guage or no?

In the end, we believe that research titrating the threshold of
explicit-declarative rules is relevant to comparative and develop-
mental psychologists and neuroscientists because it raises produc-
tive questions at the intersection between human and animal cog-
nition. Can some animals transcend associative learning, showing
a form of explicit (RB) cognition? What are the simplest and best
paradigms for exploring this transition? What aspects of explicit
cognition can animals share with humans, which not, and which
aspects are actually shared? When do children cross the threshold
to explicit cognition, and what are the earliest steps they take in
making this transition? What were the first steps the nonhuman
primates took in cognitive evolution toward humans’ explicit
system of categorization? What are the differences in the neural
systems that afford associative and explicit categorization per-
formances? Are parallel neural differences seen in human and
animal minds? We invite our colleagues in diverse areas to join
us in mapping and illuminating this intriguing psychological
threshold.

This invitation comes with a caution that points to some limi-
tations in existing research—including our own research and in-
cluding the present research. It is a commonplace that animals
learn by reinforcement and behave because of reinforcement, and
consequently, scientists traditionally follow the logic of immediate
and direct reinforcement. Unfortunately, this will make
associative-learning strategies “pay” for animals. They may mem-
orize exemplars and respond to them reactively. They may not be
incentivized fully to transcend associative learning. They may
suffice with a comfortable and easily accessible learning approach.
All of these tendencies could be amplified by macaques’ transi-
tional status as creatures with fairly dominant associative-learning
systems and fairly timid explicit-declarative systems. It will need
the ingenuity of our colleagues to design the paradigms that can
explore the latter system more richly, revealing the true “top” of
nonhuman primates in this domain. The research presented here is
a step in suggesting where and how to start looking for that top, but
many carefully designed studies using converging methods will be
needed to complete that assessment.



gical Association or one of its allied publishers.

This document is copyrighted by the American Psycholo

and is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

TRANSFER OF CATEGORY KNOWLEDGE BY PRIMATES 73

References

Ahn, W. K., & Medin, D. L. (1992). A two-stage model of category
construction. Cognitive Science, 16, 81-121. http://dx.doi.org/10.1207/
$15516709cog1601_3

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M.
(1998). A neuropsychological theory of multiple systems in category
learning. Psychological Review, 105, 442-481. http://dx.doi.org/10
.1037/0033-295X.105.3.442

Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category
learning. Trends in Cognitive Sciences, 5, 204-210. http://dx.doi.org/10
.1016/S1364-6613(00)01624-7

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and
categorization of multidimensional stimuli. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, 33-53. http://dx.doi
.org/10.1037/0278-7393.14.1.33

Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0.
Annals of the New York Academy of Sciences, 1224, 147-161. http://dx
.doi.org/10.1111/j.1749-6632.2010.05874.x

Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus
feedback training in rule-based and information-integration category
learning. Memory and Cognition, 30, 666—677. http://dx.doi.org/10
.3758/BF03196423

Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the dominance of
unidimensional rules in unsupervised categorization. Perception and
Psychophysics, 61, 1178—-1199. http://dx.doi.org/10.3758/BF03207622

Ashby, F. G., & Waldron, E. M. (1999). On the nature of implicit
categorization. Psychonomic Bulletin and Review, 6, 363-378. http://dx
.doi.org/10.3758/BF03210826

Beran, M. J., Evans, T. A., Klein, E. D., & Einstein, G. O. (2012). Rhesus
monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella) re-
member future responses in a computerized task. Journal of Experimen-
tal Psychology: Animal Behavior Processes, 38, 233-243. http://dx.doi
.org/10.1037/a0027796

Beran, M. J., Perdue, B. M., & Smith, J. D. (2014). What are my chances?
Closing the gap in uncertainty monitoring between rhesus monkeys
(Macaca mulatta) and capuchin monkeys (Cebus apella). Journal of
Experimental Psychology: Animal Learning and Cognition, 40, 303—
316. http://dx.doi.org/10.1037/xan0000020

Beran, M. J., & Smith, J. D. (2011). Information seeking by rhesus
monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella).
Cognition, 120, 90-105. http://dx.doi.org/10.1016/j.cognition.2011.02
016

Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a
chimpanzee (Pan troglodytes). Journal of Comparative Psychology,
103, 23-31. http://dx.doi.org/10.1037/0735-7036.103.1.23

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking.
New York, NY: Wiley.

Casale, M. B., Roeder, J. L., & Ashby, F. G. (2012). Analogical transfer in
perceptual categorization. Memory and Cognition, 40, 434—449. http://
dx.doi.org/10.3758/s13421-011-0154-4

Cook, R. G., & Smith, J. D. (2006). Stages of abstraction and exemplar
memorization in pigeon category learning. Psychological Science, 17,
1059-1067. http://dx.doi.org/10.1111/j.1467-9280.2006.01833.x

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in
category learning. Journal of Experimental Psychology: General, 127,
107-140. http://dx.doi.org/10.1037/0096-3445.127.2.107

Feldman, J. (2000). Minimization of Boolean complexity in human concept
learning. Nature, 407, 630—633. http://dx.doi.org/10.1038/35036586

Gallup, G. G. (1982). Self-awareness and the emergence of mind in
primates. American Journal of Primatology, 2, 237-248. http://dx.doi
.org/10.1002/ajp.1350020302

Herman, L. M., & Forestell, P. H. (1985). Reporting presence or absence
of named objects by a language-trained dolphin. Neuroscience and

Biobehavioral Reviews, 9, 667-681. http://dx.doi.org/10.1016/0149-
7634(85)90013-2

Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in
pigeons. Journal of Experimental Psychology: Animal Behavior Pro-
cesses, 2, 285-302. http://dx.doi.org/10.1037/0097-7403.2.4.285

Homa, D., Sterling, S., & Trepel, L. (1981). Limitations of exemplar-based
generalization and the abstraction of categorical information. Journal of
Experimental Psychology: Human Learning and Memory, 7, 418—-439.
http://dx.doi.org/10.1037/0278-7393.7.6.418

Jitsumori, M. (1994). Discrimination of artificial polymorphous categories
by rhesus monkeys (Macaca mulatta). The Quarterly Journal of Exper-
imental Psychology, 47, 371-386.

Kreutzer, M., Leonard, C., Flavell, J., & Hagen, J. (1975). An interview
study of children’s knowledge about memory. Monographs of the Soci-
ety for Research in Child Development, 40, 1-60. http://dx.doi.org/10
.2307/1165955

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and
exemplar models of categorization. Perception and Psychophysics, 53,
49-70. http://dx.doi.org/10.3758/BF03211715

Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and
procedural-learning based systems of perceptual category learning. Be-
havioural Processes, 66, 309-332. http://dx.doi.org/10.1016/j.beproc
.2004.03.011

Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback
effects on rule-based and information-integration category learning.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 29, 650—662. http://dx.doi.org/10.1037/0278-7393.29.4.650

Maddox, W. T., & Ing, A. D. (2005). Delayed feedback disrupts the
procedural-learning system but not the hypothesis-testing system in
perceptual category learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 31, 100-107. http://dx.doi.org/10
.1037/0278-7393.31.1.100

Maydeu-Olivares, A. (2017). Maximum likelihood estimation of structural
equation models for continuous data: Standard errors and goodness of
fit. Structural Equation Modeling, 24, 383-394. http://dx.doi.org/10
.1080/10705511.2016.1269606

McNemar, Q. (1947). Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika, 12, 153-157.
http://dx.doi.org/10.1007/BF02295996

Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Family
resemblance, conceptual cohesiveness, and category construction. Cog-
nitive Psychology, 19, 242-279. http://dx.doi.org/10.1016/0010-0285
(87)90012-0

Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT
Press.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-
exception model of classification learning. Psychological Review, 101,
53-79. http://dx.doi.org/10.1037/0033-295X.101.1.53

Pan, J. X., & Fang, K. T. (Eds.). (2002). Maximum likelihood estimation.
In Growth curve models and statistical diagnostics (pp. 77-158). New
York, NY: Springer. http://dx.doi.org/10.1007/978-0-387-21812-0_3

Pearce, J. M., Esber, G. R., George, D. N., & Haselgrove, M. (2008). The
nature of discrimination learning in pigeons. Learning and Behavior, 36,
188-199. http://dx.doi.org/10.3758/LB.36.3.188

Pepperberg, I. M. (1983). Cognition in the African grey parrot: Preliminary
evidence for auditory/vocal comprehension of the class concept. Animal
Learning and Behavior, 11, 179-185. http://dx.doi.org/10.3758/
BF03199646

Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory
of mind? Behavioral and Brain Sciences, 1, 515-526. http://dx.doi.org/
10.1017/S0140525X00076512

Regehr, G., & Brooks, L. R. (1995). Category organization in free classi-
fication: The organizing effect of an array of stimuli. Journal of Exper-


http://dx.doi.org/10.1207/s15516709cog1601_3
http://dx.doi.org/10.1207/s15516709cog1601_3
http://dx.doi.org/10.1037/0033-295X.105.3.442
http://dx.doi.org/10.1037/0033-295X.105.3.442
http://dx.doi.org/10.1016/S1364-6613%2800%2901624-7
http://dx.doi.org/10.1016/S1364-6613%2800%2901624-7
http://dx.doi.org/10.1037/0278-7393.14.1.33
http://dx.doi.org/10.1037/0278-7393.14.1.33
http://dx.doi.org/10.1111/j.1749-6632.2010.05874.x
http://dx.doi.org/10.1111/j.1749-6632.2010.05874.x
http://dx.doi.org/10.3758/BF03196423
http://dx.doi.org/10.3758/BF03196423
http://dx.doi.org/10.3758/BF03207622
http://dx.doi.org/10.3758/BF03210826
http://dx.doi.org/10.3758/BF03210826
http://dx.doi.org/10.1037/a0027796
http://dx.doi.org/10.1037/a0027796
http://dx.doi.org/10.1037/xan0000020
http://dx.doi.org/10.1016/j.cognition.2011.02.016
http://dx.doi.org/10.1016/j.cognition.2011.02.016
http://dx.doi.org/10.1037/0735-7036.103.1.23
http://dx.doi.org/10.3758/s13421-011-0154-4
http://dx.doi.org/10.3758/s13421-011-0154-4
http://dx.doi.org/10.1111/j.1467-9280.2006.01833.x
http://dx.doi.org/10.1037/0096-3445.127.2.107
http://dx.doi.org/10.1038/35036586
http://dx.doi.org/10.1002/ajp.1350020302
http://dx.doi.org/10.1002/ajp.1350020302
http://dx.doi.org/10.1016/0149-7634%2885%2990013-2
http://dx.doi.org/10.1016/0149-7634%2885%2990013-2
http://dx.doi.org/10.1037/0097-7403.2.4.285
http://dx.doi.org/10.1037/0278-7393.7.6.418
http://dx.doi.org/10.2307/1165955
http://dx.doi.org/10.2307/1165955
http://dx.doi.org/10.3758/BF03211715
http://dx.doi.org/10.1016/j.beproc.2004.03.011
http://dx.doi.org/10.1016/j.beproc.2004.03.011
http://dx.doi.org/10.1037/0278-7393.29.4.650
http://dx.doi.org/10.1037/0278-7393.31.1.100
http://dx.doi.org/10.1037/0278-7393.31.1.100
http://dx.doi.org/10.1080/10705511.2016.1269606
http://dx.doi.org/10.1080/10705511.2016.1269606
http://dx.doi.org/10.1007/BF02295996
http://dx.doi.org/10.1016/0010-0285%2887%2990012-0
http://dx.doi.org/10.1016/0010-0285%2887%2990012-0
http://dx.doi.org/10.1037/0033-295X.101.1.53
http://dx.doi.org/10.1007/978-0-387-21812-0_3
http://dx.doi.org/10.3758/LB.36.3.188
http://dx.doi.org/10.3758/BF03199646
http://dx.doi.org/10.3758/BF03199646
http://dx.doi.org/10.1017/S0140525X00076512
http://dx.doi.org/10.1017/S0140525X00076512

publishers.

is not to be disseminated broadly.

ghted by the American Psychological Association or one of its allied

This document is copyri
This article is intended solely for the personal use of the individual user anc

74 ZAKRZEWSKI, CHURCH, AND SMITH

imental Psychology: Learning, Memory, and Cognition, 21, 347-363.
http://dx.doi.org/10.1037/0278-7393.21.2.347

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the
internal structure of categories. Cognitive Psychology, 7, 573—605.
http://dx.doi.org/10.1016/0010-0285(75)90024-9

Rosseel, Y. (2002). Mixture models of categorization. Journal of Mathe-
matical Psychology, 46, 178-210. http://dx.doi.org/10.1006/jmps.2001
1379

Savage-Rumbaugh, E. S. (1986). Ape language: From conditioned re-
sponse to symbol. New York, NY: Columbia University Press.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics, 6, 461-464. http://dx.doi.org/10.1214/a0s/1176344136

Shepard, R. N., Hovland, C. 1., & Jenkins, H. M. (1961). Learning and
memorization of classifications. Psychological Monographs: General
and Applied, 75, 1-42. http://dx.doi.org/10.1037/h0093825

Smith, J. D., Ashby, F. G., Berg, M. E., Murphy, M. S., Spiering, B., Cook,
R. G., & Grace, R. C. (2011). Pigeons’ categorization may be exclu-
sively nonanalytic. Psychonomic Bulletin and Review, 18, 414—421.
http://dx.doi.org/10.3758/s13423-010-0047-8

Smith, J. D., Beran, M. J., Crossley, M. J., Boomer, J., & Ashby, F. G.
(2010). Implicit and explicit category learning by macaques (Macaca
mulatta) and humans (Homo sapiens). Journal of Experimental Psychol-
ogy: Animal Behavior Processes, 36, 54—65. http://dx.doi.org/10.1037/
20015892

Smith, J. D., Beran, M. J., Redford, J. S., & Washburn, D. A. (2006).
Dissociating uncertainty responses and reinforcement signals in the
comparative study of uncertainty monitoring. Journal of Experimental
Psychology: General, 135, 282-297. http://dx.doi.org/10.1037/0096-
3445.135.2.282

Smith, J. D., Berg, M. E., Cook, R. G., Murphy, M. S., Crossley, M. J.,
Boomer, J., . . . Grace, R. C. (2012). Implicit and explicit categorization:
A tale of four species. Neuroscience and Biobehavioral Reviews, 36,
2355-2369. http://dx.doi.org/10.1016/j.neubiorev.2012.09.003

Smith, J. D., Boomer, J., Zakrzewski, A. C., Roeder, J. L., Church, B. A.,
& Ashby, F. G. (2014). Deferred feedback sharply dissociates implicit
and explicit category learning. Psychological Science, 25, 447-457.
http://dx.doi.org/10.1177/0956797613509112

Smith, J. D., Crossley, M. J., Boomer, J., Church, B. A., Beran, M. J., &
Ashby, F. G. (2012). Implicit and explicit category learning by capuchin
monkeys (Cebus apella). Journal of Comparative Psychology, 126,
294-304. http://dx.doi.org/10.1037/a002603 1

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early
epochs of category learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 24, 1411-1436. http://dx.doi.org/10
.1037/0278-7393.24.6.1411

Smith, J. D., Minda, J. P., & Washburn, D. A. (2004). Category learning in
rhesus monkeys: A study of the Shepard, Hovland, and Jenkins (1961)
tasks. Journal of Experimental Psychology: General, 133, 398—-414.
http://dx.doi.org/10.1037/0096-3445.133.3.398

Smith, J. D., Redford, J. S., & Haas, S. M. (2008). Prototype abstraction by
monkeys (Macaca mulatta). Journal of Experimental Psychology: Gen-
eral, 137, 390—401. http://dx.doi.org/10.1037/0096-3445.137.2.390

Smith, J. D., Schull, J., Strote, J., McGee, K., Egnor, R., & Erb, L. (1995).
The uncertain response in the bottlenosed dolphin (Tursiops truncatus).
Journal of Experimental Psychology: General, 124, 391-408. http://dx
.doi.org/10.1037/0096-3445.124.4.391

Smith, J. D., Zakrzewski, A. C., Johnston, J. J. R., Roeder, J. L., Boomer,
J., Ashby, F. G., & Church, B. A. (2015). Generalization of category
knowledge and dimensional categorization in humans (Homo sapiens)
and nonhuman primates (Macaca mulatta). Journal of Experimental
Psychology: Animal Learning and Cognition, 41, 322-335. http://dx.doi
.org/10.1037/xan000007 1

Washburn, D. A., & Rumbaugh, D. M. (1992). Investigations of rhesus
monkey video-task performance: Evidence for enrichment. Contempo-
rary Topics in Laboratory Animal Science, 31, 6-10.

Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual
behavior in pigeons: Categories, subcategories, and pseudocategories.
Journal of Experimental Psychology: Animal Behavior Processes, 14,
235-246. http://dx.doi.org/10.1037/0097-7403.14.3.235

Received February 9, 2017
Revision received August 16, 2017
Accepted September 5, 2017 =


http://dx.doi.org/10.1037/0278-7393.21.2.347
http://dx.doi.org/10.1016/0010-0285%2875%2990024-9
http://dx.doi.org/10.1006/jmps.2001.1379
http://dx.doi.org/10.1006/jmps.2001.1379
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1037/h0093825
http://dx.doi.org/10.3758/s13423-010-0047-8
http://dx.doi.org/10.1037/a0015892
http://dx.doi.org/10.1037/a0015892
http://dx.doi.org/10.1037/0096-3445.135.2.282
http://dx.doi.org/10.1037/0096-3445.135.2.282
http://dx.doi.org/10.1016/j.neubiorev.2012.09.003
http://dx.doi.org/10.1177/0956797613509112
http://dx.doi.org/10.1037/a0026031
http://dx.doi.org/10.1037/0278-7393.24.6.1411
http://dx.doi.org/10.1037/0278-7393.24.6.1411
http://dx.doi.org/10.1037/0096-3445.133.3.398
http://dx.doi.org/10.1037/0096-3445.137.2.390
http://dx.doi.org/10.1037/0096-3445.124.4.391
http://dx.doi.org/10.1037/0096-3445.124.4.391
http://dx.doi.org/10.1037/xan0000071
http://dx.doi.org/10.1037/xan0000071
http://dx.doi.org/10.1037/0097-7403.14.3.235

	The Transfer of Category Knowledge by Macaques (Macaca mulatta) and Humans (Homo sapiens)
	Experiment 1: Humans
	Method
	Participants
	Stimuli
	Category structures
	Categorization trials
	Procedure
	Instructions
	Formal modeling

	Results
	Accuracy-based analyses
	Accuracy-based analyses: Generalization to transfer stimuli
	Model-based analyses


	Experiment 2: Monkeys
	Method
	Subjects
	Small-sample primate research in comparative psychology
	Stimuli
	Category structures
	Categorization trials
	Procedure

	Results
	Accuracy-based analyses
	Accuracy-based analyses: Generalization to transfer stimuli
	Model-based analyses
	Murph: RB task
	Murph: II task
	Obi: II task
	Obi: RB task


	General Discussion
	References


