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Easy-to-hard effects in perceptual learning depend upon the degree
to which initial trials are “easy”
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Abstract
Starting perceptual training at easy levels before progressing to difficult levels generally produces better learning outcomes than
constantly difficult training does. However, little is known about how “easy” these initial levels should be in order to yield easy-
to-hard effects. We compared five levels of initial training block difficulty varying from very easy to hard in two auditory-
discrimination learning tasks—a frequency modulation rate discrimination (Experiment 1) and a frequency range discrimination
(Experiment 2). The degree of difficulty was based on individualized pretraining ~71% correct discrimination thresholds. Both
experiments revealed a sweet spot for easy-to-hard effects. Conditions where initial blocks were either too easy or too difficult
produced less benefit than did blocks of intermediate difficulty. Results challenge assumptions that sequencing effects in learning
are related to attentional spotlighting of task-relevant dimensions. Rather, they support incremental learning models that account
for easy-to-hard effects. Further, the results have implications for how perceptual training regimens should be designed to
maximize the benefits of rehabilitative perceptual training.
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Learning can affect the way we experience the world by
changing how we process the features of stimuli that reside
in it (Goldstone, 1998). Examples of this perceptual learning
include how nonnative accents become easier to understand
after exposure (Van Engen & Peelle, 2014) and how training
to become a wine expert allows one to notice details that a
novice misses (James, 1890). Learning is generally more ef-
fective if training starts off at an easy level of difficulty before
moving to hard perceptual problems. For instance, both rats
and humans learn a difficult auditory-identification task better
if they start with easy trials than if they complete difficult trials
throughout training (Liu, Mercado, Church, & Orduña, 2008).
This phenomenon has been referred to as the easy-to-hard

effect. It occurs in several modalities and species (for review,
see Wisniewski, Radell, Church, & Mercado, 2017).

One account of easy-to-hard effects is that initial easy trials
serve to direct learners’ attention to relevant dimensions. Once
the “attentional spotlight” is placed on the most relevant di-
mension, learners perceive that dimension more minutely.
Pashler and Mozer (2013) found easy-to-hard effects with
participants categorizing face-like “demon” stimuli by horn
height. If participants were told that horn height was critical,
the easy-to-hard effect disappeared. A single exposure that
directs attention to aspects of an image needed to perceive
an object (e.g., a face masked by noise) can also yield stable
and long-lasting changes in perception (Ahissar & Hochstein,
2004). Such “eureka” effects have been used as support for
theories that explain perceptual learning with attentional-
spotlighting mechanisms (Ahissar & Hochstein, 2004).
Formal models that allow “attentional stretching” of dimen-
sions can account for many instances of easy-to-hard effects as
well as other effects of stimulus sequencing (e.g., Carvalho &
Goldstone, 2015; Krushcke, 1992; Sutherland & Mackintosh,
1971).

Incremental associative and/or representational modification-
based learning processes may additionally drive easy-to-hard
effects. The classic gradient interaction theory of Spence (1937)
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proposes that positive excitatory gradients of generalization de-
velop around reinforced stimuli, while negative inhibitory gradi-
ents surround nonreinforced stimuli. An individual’s ability to
discriminate is governed by the summation of these gradients.
If the gradients are too overlapping (as when a reinforced S+
stimulus is difficult to discriminate from a nonreinforced S−),
they will mostly cancel each other out, and learning will proceed
slowly. If the gradients are more separated, but still overlapping,
their summation will produce a stronger difference between
S+ and S− that will generalize from the easy to the hard ver-
sion of the task (also see McLaren & Mackintosh, 2002).
Nonassociative representationalmodification-basedmodels
account for easy-to-hard effects by taking into consideration
how stimulus sequencing affects the plasticity of stimulus
representations.When two stimuli are very similar, they will
compete to change the same representational space (e.g.,
neurons coding for the same frequencies of sound). In this
case, learning proceeds slowly. When two stimuli are easier
to discriminate, competition is reduced, and thus a more ac-
curate representation of each stimulus can be developed and
later refined on the hard version of the task (Saksida, 1999).

The debate between attentional spotlighting and incremen-
tal learning theories continues. In one recent study, people
were trained to discriminate auditory frequency modulation
(FM) rates in two different frequency ranges (300–600 Hz or
3000–6000 Hz; Wisniewski, et al., 2017). In one frequency
range, difficulty faded from easy to hard. In the other, discrim-
inations remained constantly difficult. Even though the same
dimension (FM rate) was relevant in both frequency ranges,
participants performed better in the range that received easy-
to-hard training. However, other work has failed to find easy-
to-hard benefits when attentional-spotlighting effects are kept
to a minimum (Pashler & Mozer, 2013). Those authors con-
cluded that easy-to-hard effects should only manifest in rela-
tively high-level perceptual category learning tasks where the
learner must first figure out which dimensions are relevant. In
some cases, simple exposure to stimuli in an easy-to-hard
progression can benefit learning, suggesting that an attention
independent nonassociative learning process is at play
(Church, Mercado, Wisniewski, & Liu, 2013; Sanjuán,
Nelson, & Alonso, 2014). In a similar vein, enhancement of
auditory-evoked potentials (AEPs) is larger after easy-to-hard
compared with constantly difficult training (Orduña, Liu,
Church, Eddins, & Mercado, 2012). This is the case even
when participants are asked to ignore sounds during AEP
collection (Orduña et al., 2012). However, it could be argued
that exposure to easily discriminable contrasts serves as a cue
for directing attention to specific dimensions even when there
is no task involved, and that participants are paying attention
to stimuli during passive AEP collection despite being
instructed not to do so.

Here, we pit yet-to-be tested predictions of these two clas-
ses of theory against each other in a relatively low-level

auditory task. Incremental learning processes are constrained
by the degree to which initial trials are “easy.” If initial trials
contain very distinct nonoverlapping representations, general-
ization from those easy trials to harder trials will be minimal.
For instance, gradients of excitation and inhibition will be too
disimilar to yield strong gradient interaction at the points of
the hard S+/S− discrimination. From the view of
nonassociative representational modification accounts, ex-
tremely easy trials make it less likely that representations will
be refined that can be usefully modified on a harder version of
the task. On the contrary, attentional-spotlighting accounts
predict that easy trials should facilitate performance as long
as the discrimination-relevant dimension is made obvious.

Experiment 1

Five groups of individuals were trained to discriminate rates of
frequency modulation (FM). Groups were either trained con-
stantly at their predetermined 71% correct threshold (hard: H)
or faded from easier contrasts to their threshold (easy-to-hard:
EH). There were four different EH conditions differing in the
degree to which initial easy trials were easy: EH1 (most diffi-
cult)–EH4 (easiest). If easy-to-hard effects are exclusively re-
lated to learning the discrimination-relevant dimension, then
there should be a monotonic trend of increasing posttraining
performance from H to EH4 or no effect of training due to a
“eureka” experience in the thresholding phase. However, in-
cremental theories predict that there should be a sweet spot
where fading benefits are observed somewhere between the H
and EH4 conditions.

Method

We designated data collection and analysis plans prior to run-
ning experiments. The a priori plans, an annotated
postexperiment file, and the raw data can be downloaded from
www.alclaboratory.com/opendata.

Participants Seventy individuals at Kansas State University
participated in exchange for course credit. All signed a con-
sent form approved by the local Institutional Review Board
and reported normal hearing. Fourteen participants were ran-
domly assigned to each of the conditions.

Stimuli and apparatus Single upward directed FM sweeps
(1.5–3 kHz) served as stimuli (see Fig. 1a for spectrograms
of select stimuli). FM sweeps were rendered online in
MATLAB 2018b (The MathWorks, Natick, MA) along with
experimental procedures. A 5 octaves/s sweep served as a
standard “slow” rate. All other rates were faster.

Neutral valence silent videos were downloaded from
videos.pexels.com under a creative commons zero license. A
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random video was selected after each block and played during
a forced 30-s break. This served to mitigate overwhelming
listeners with constant auditory stimulation.

Par t i c ipan t s sa t in sound-a t t enua t ing boo ths
(WhisperRoom, Knoxville, TN) and heard stimuli over
Sennheiser HD-280 closed-back headphones (Sennheiser,
Germany) connected to Focusrite Scarlett external sound
cards (Focusrite, UK). Stimuli were presented at ~81 dB
SPL. Responses were made on custom keypads (P.I.,
Engineering, Williamston, MI).

Procedures A two-interval two-alternative forced-choice (2i–
2afc) task was used to identify ~71% correct thresholds in an
initial 60 trial block. On each trial, two FM sounds were
played, separated by a 500-ms interstimulus interval. One
was always the standard. The other was faster (order selected
at random on each trial). Participants’ task was to indicate
which sound was slower. The FM rate difference started at 4
octaves/s on Trial 1. That is, the “slow” rate was 5 octaves/s,
and the “fast” was 9 octaves/s. Using a one-up, two-down
procedure (Levitt, 1970), the difference was made larger by
dividing by 0.9 after every incorrect response and was made
smaller by multiplying by 0.9 after every two consecutive
correct responses. The mean octaves/s difference on the last
10 trials of the block was taken as a participant’s threshold.

Participants then proceeded to 1i–2afc training.
Participants were asked to indicate whether a single FM sweep
was “fast” or “slow.” Participants were informed that 50% of
sounds would be “fast” and 50% would be “slow.” Responses
were not registered until the sound completed playing.
Feedback of correctness was presented after responding. If a
response was not made within a 5-s window following sound
offset, a missing response was recorded. These trials were not
included in the analysis. A pseudorandom trial order was used
such that the same stimulus could not occur more than 4 times
consecutively.

Group H completed four blocks of training, all at threshold.
Group EH1 had the first block of training at 2.25 times thresh-
old, and the second training block at 1.625 times threshold.
First and second block training levels for Groups EH2, EH3,
and EH4 were 3.5 and 2.25, 6 and 3.5, and 11 and 6, respec-
tively. Training Blocks 3 and 4 were at threshold for EH
Groups 1–4, just as the H group. Figure 1b shows an example
of the progressions of fast FM rates that would be used for
Training Blocks 1–4 for a hypothetical individual with a 0.5
octaves/s threshold under each of the conditions. Training
blocks were all 32 trials long.

After training, all participants completed an 80-trial test at
threshold. The task was identical to training, except that no
feedback was given after responding. Test performance served
as the critical variable for our hypotheses.

Results and discussion

The mean difference threshold across all individuals was .56
octaves/s (SD = .27). There were no significant differences in
thresholds across conditions, F < 2.

We used A' as a measure of accuracy in training and testing,
computed using Equation 1 when hit rate (H) was greater than
the false-alarm rate (F), and Equation 2 otherwise.

A
0 ¼ :5þ H−Fð Þ 1þ H−Fð Þ

4H 1−Fð Þ ð1Þ

A
0 ¼ :5−

F−Hð Þ 1þ F−Hð Þ
4F 1−Hð Þ ð2Þ

Figure 2a shows A’ for the training blocks. Unsurprisingly,
the initial two training blocks showed different accuracies
across the conditions. The H condition showed the lowest
performance as the first two blocks were at ~71% thresholds.
For the EH groups, there was higher accuracy for EH4 com-
pared to EH1, with the others were in between. Accuracy in
the third and fourth blocks of training was comparable across
conditions.

The lowest level of test performance was observed for the
H condition, while the highest performance was observed for

Fig. 1 a Spectrograms of select FM sweep stimuli at rates from 5 octaves/
s to 18 octaves/s. b Depiction of fast FM rates that would be presented
under each condition for a participant with a threshold of .5 octaves/s
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the EH2 condition (see Fig. 2b). Planned orthogonal linear
(attentional spotlighting prediction; coefficients = −2, −1, 0,
1, 2) and quadratic contrasts (incremental prediction; coeffi-
cients = 2, −1, - 2, −1, 2) were computed for the trends in
means across conditions H to EH4. These contrasts were
assessed for significance using a nonparametric permutation-
based procedure. For 1,000 iterations, condition labels were
randomly shuffled and a linear (ψlinear) and quadratic
(ψquadratic) contrast statistic was computed. These permuted
ψ values created a null hypothesis distribution. A p value
was considered to be the proportion of ψ values in the distri-
bution that exceeded that of the actual data (α = .05).

Figure 2c depicts the observed linear and quadratic contrast
statistics along with 90% confidence intervals for one-sided
hypotheses (derived from obtained null hypothesis distribu-
tion). The linear contrast was not significant, p = .448. The
quadratic contrast was, p = .029, demonstrating that interme-
diate levels of difficulty for initial easy trials led to better test
accuracy than levels that were too difficult (H condition) or
too easy (EH4 condition).

Experiment 2

Experiment 2 was similar to Experiment 1, except that stimuli
varied on the dimension of frequency range rather than FM
rate. The purpose was to test whether or not Experiment 1
effects could be replicated for a different acoustic dimension.

Method

With one exception, the data collection and analysis plans
were identical to Experiment 1. Instead of using FM rate dif-
ference threshold as a drop criterion, a threshold of two semi-
tones frequency range difference was used.

Participants Seventy-three individuals enrolled in courses at
Kansas State University participated in exchange for credit.
All signed a consent form approved by Kansas State
University’s Institutional Review Board. All participants
self-reported normal hearing. Fourteen participants were ini-
tially randomly assigned to each of the conditions. Three par-
ticipants were dropped due to high pitch discrimination
thresholds (>2 semitones) and were replaced.

Stimuli and apparatusA standard “low” pitched stimulus was
identical to the “slow” stimulus in Experiment 1 (5 octaves/s;
1.5–3 kHz frequency range). All other stimuli spanned a
higher frequency range.

Procedures The thresholding task was similar to Experiment
1, except that the participant’s task was to indicate which
sound was lower in pitch. Frequency range difference started

Fig. 2 aAccuracy (A') across training blocks for all groups in Experiment
1. Error bars show standard error of the mean (SEM). b Accuracy (A') in
the test for all groups. Error bars show SEM. c Linear and quadratic
contrasts. Error bars show 90% confidence intervals according to a null
hypothesis distribution generated using a permutation procedure (see
text)
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at 2.16 semitones. The standard “low” sound swept from 1.5
to 3 kHz, while the “high” sound swept from 1.7 kHz to 3.4
kHz. The difference was made larger by dividing the differ-
ence in Hz by 0.9 after every incorrect response and made
smaller by multiplying by 0.9 after every two consecutive
correct responses. The mean difference on the last 10 trials
of the block was taken as a participant’s ~71% correct
threshold.

Training and testing procedures were the same as
Experiment 1, except that the stimulus differences were based
off thresholds for the frequency range of FM sweeps rather
than rate. Also, the task was to indicate whether a sound was
“high” or “low” rather than “fast” or “slow.”

Results and discussion

The mean threshold across participants was .49 semitones (SD
= .38). There were no significant differences across condi-
tions, F < 2. As in Experiment 1, the EH4 group performed
best and the H group performed worst for the first two blocks
of training (see Fig. 3a). The other EH groups were in be-
tween. There also appeared to be a trend in Blocks 3 and 4
for higher accuracy in the EH1–3 groups compared with the
others. This is consistent with a nonmonotonic trend in accu-
racy across degree of initial block easiness. We turn next to the
test data, as this data were critical to evaluating the competing
hypotheses.

Figure 3b shows A' in the test. Much like Experiment 1, the
data show a quadratic trend from H to EH4 such that condi-
tions where initial trials were too easy or too difficult showed
lower accuracy than conditions with intermediate levels of
difficulty for the first two blocks. The same statistics used in
Experiment 1 were employed in the analysis of Experiment 2
(see Fig. 3c). The linear trend was not significant, p = .311.
The quadratic contrast was significant, p = .008, as predicted
by incremental theories of learning.

General discussion

In two experiments, we pitted predictions of attentional
spotlighting and incremental learning theories against each
other in the context of easy-to-hard effects. We found a sweet
spot for easy-to-hard effects in auditory learning such that
training protocols where initial blocks are too easy or too
difficult produce less benefit than blocks of intermediate dif-
ficulty. This result was observed for two different acoustic
dimensions, was predicted by incremental accounts of learn-
ing, and runs counter to predictions of attentional spotlighting.
It is also worth noting that discrimination thresholds on the
relevant dimension for every listener were collected before
training. Listeners were able to reach reasonable thresholds,
suggesting they had knowledge of the relevant dimension

Fig. 3 aAccuracy (A') across training blocks for all groups in Experiment
2. Error bars show standard error of the mean (SEM). b Accuracy (A') in
the test for all groups. Error bars show SEM. c Linear and quadratic
contrasts. Error bars show 90% confidence intervals according to a null
hypothesis distribution generated using a permutation procedure (see
text)
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before ever starting training. Easy-to-hard effects observed as
a result of training are thus unlikely to come from a “eureka”
experience (Ahissar & Hochstein, 2004) or dimensional dis-
covery (Pashler & Mozer, 2013).

It appears that attentional spotlighting is not a sufficient
explanation of easy-to-hard effects on its own. Others have
come to similar conclusions based on recent work in category
learning. Lee and Livesey (2018) trained participants to cate-
gorize circles that varied in color and size such that paying
attention to a single dimension was encouraged. Afterwards,
participants were tested either in a condition where they could
consistently apply a rule based on the relevant dimension
(e.g., small circles are Category A, but large circles are
Category B), or in a condition where such a rule led to incon-
sistent performance. Participants tested in the rule-consistent
condition showed generalization patterns that were indicative
of rule use on the relevant dimension (e.g., size). However, the
inconsistent group showed generalization patterns more con-
sistent with incremental learning processes (also, see
Wisniewski, Church, & Mercado, 2014a; Wisniewski,
Radell, Guillette, Sturdy, & Mercado, 2012).

The recent work of Lee and Livesey (2018) combined with
the results reported here suggest an interesting possibility for
why attentional spotlighting has remained such a favored ac-
count of easy-to-hard effects: Strong attentional spotlighting
effects have the potential to mask effects of other learning
processes. Easy-to-hard effects unlikely to be related to atten-
tional spotlighting are generally smaller (e.g., Cohen’s d =
0.90 for Experiment 1; Liu et al., 2008) compared with the
effect of knowing the relevant dimension(s) (e.g., Cohen’s d =
2.58 for Experiment 5; Pashler & Mozer, 2013). At the same
time, selection of suboptimal “easy” levels may lead to weak
easy-to-hard effects generated by incremental learning pro-
cesses, making this discrepancy even larger. Many models
account for sequencing effects through adjustments to a pa-
rameter that creates “attentional stretching” of a dimension by
reducing stimulus similarity (sequential attention theory:
Carvalho & Goldstone, 2015; ALCOVE: Kruschke, 1992;
analyzer theory: Sutherland &Mackintosh, 1971). Often, oth-
er models (e.g., McLaren & Mackintosh, 2002; Saksida,
1999) or model components that do not allude to attention
are ignored or quickly abandoned as explanations of sequenc-
ing. We do not protest the idea that attentional spotlighting
contributes to sequencing effects in learning, only to the no-
tion that attentional spotlighting is a sufficient explanation on
its own. Models that take into consideration attentional states,
along with incremental learning processes, will do a better job
of simulating easy-to-hard effects and perceptual learning in
general.

Largely based on the assumption that initial easy trials help
learners discover relevant dimensions, adaptive training pro-
cedures that start at very easy levels are used extensively in
perceptual learning studies. Some have suggested that the

most effective way to train individuals should be to use initial
easy trials until an individual discovers the relevant dimen-
sion, then switch to constantly difficult trials that allow for
most accurate tweaking of category boundaries (e.g., Pashler
& Mozer, 2013). This is somewhat in line with how adaptive
procedures work, where the majority of trials are at an indi-
vidual’s asymptotic performance. The current data highlight
the need for empirically based selection of perceptual training
regimens. Though comparisons of different adaptive proce-
dures sometimes show little to no effects of varying conditions
(Amitay, Irwin, Hawkey, Cowan, & Moore, 2006), future
work should compare the effectiveness of adaptive training
procedures to those of fixed levels of progression selected to
optimize learning (e.g., by designing initial trials to be in be-
tween too easy and too difficult). Since incremental learning
processes are also affected by sequencing, it is further impor-
tant to examine stimulus sequencing effects under conditions
of exposure (cf. Church et al., 2013; Sanjuán et al., 2014;
Wright, Sabin, Zhang, Marrone, & Fitzgerald, 2010), latent
learning between blocks or sessions (Molloy, Moore,
Sohoglu, & Amitay, 2012), and when performance depends
on generalizing across training-irrelevant dimensions and/or
stimulus characteristics (Wisniewski, Liu, Church, &
Mercado, 2014b; Wisniewski, Mantell, & Pfordresher,
2013). It will also be necessary to examine whether initial trial
ease affects learning in other modalities the same way.

Consistent with incremental based learning theory expla-
nations of easy-to-hard effects, we found a sweet spot for
initial trial ease in two different auditory tasks. Considering
incremental learning as well as attentional-spotlighting expla-
nations of sequencing effects in training will help advance
theory, as well as lead to more effective training procedures.
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