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Abstract The uncertainty response has grounded the study of
metacognition in nonhuman animals. Recent research has ex-
plored the processes supporting uncertainty monitoring in
monkeys. It has revealed that uncertainty responding, in con-
trast to perceptual responding, depends on significant working
memory resources. The aim of the present study was to ex-
pand this research by examining whether uncertainty monitor-
ing is also working memory demanding in humans. To ex-
plore this issue, human participants were tested with or with-
out a cognitive load on a psychophysical discrimination task
that included either an uncertainty response (allowing the par-
ticipant to decline difficult trials) or a middle-perceptual re-
sponse (labeling the same intermediate trial levels). The re-
sults demonstrated that cognitive load reduced uncertainty
responding, but increased middle responding. However, this
dissociation between uncertainty and middle responding was
only observed when participants either lacked training or had
very little training with the uncertainty response. If more train-
ing was provided, the effect of load was small. These results
suggest that uncertainty responding is resource demanding,
but with sufficient training, human participants can respond
to uncertainty either by using minimal working memory re-
sources or by effectively sharing resources. These results are
discussed in relation to the literature on animal and human
metacognition.
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Humans have feelings of knowing and not knowing, of con-
fidence and doubt. Their abilities to accurately identify these
feelings and to respond to them adaptively are the focus of the
research literature on metacognition (e.g., Benjamin, Bjork, &
Schwartz 1998; Flavell, 1979; Koriat & Goldsmith, 1994;
Metcalfe & Shimamura, 1994; Nelson, 1992; Scheck &
Nelson, 2005; Schwartz, 1994). Metacognition refers to the
ability to monitor and control one’s own perceptual and cog-
nitive processes (Nelson & Narens, 1990, 1994). This ability
plays an important role in learning and memory.

The monitoring component of metacognition has been
widely investigated in humans (e.g., Begg, Martin, &
Needham, 1992; Dunlosky & Nelson, 1992; Hart, 1967;
Koriat, 1993; Koriat & Goldsmith, 1996; Lovelace, 1984;
Metcalfe, 1986) and nonhuman animals (e.g., Beran, Smith,
Coutinho, Couchman, & Boomer, 2009; Beran, Smith,
Redford, & Washburn, 2006; Call & Carpenter, 2001; Fujita,
2009; Hampton, 2001; Kornell, 2009; Smith, Beran, Redford,
& Washburn, 2006; Smith et al. 1995; Smith, Shields,
Allendoerfer, & Washburn, 1998; Smith et al. 1997). In
humans, metacognitive monitoring is normally assessed by
asking participants to make judgments of learning (JOLs),
feeling-of-knowing (FOK) judgments, or confidence ratings
(for a review, see Koriat, 2007). In animals, the most common
method of assessment is the uncertainty-monitoring paradigm,
because it does not rely on verbal reports or verbal knowledge.
This method involves presenting subjects with stimulus trials
that vary in objective difficulty and providing them with a
response (the uncertainty response) that allows them to de-
cline any trial they choose. The idea behind this test is that
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subjects that have access to their mental states of uncertain-
ty—knowing when they do not know—will complete trials
for which they know the answer (easy trials) and skip the ones
for which they do not know the answer (difficult trials). Those
that do not have access to such states will not show this pat-
tern. Thus, it is expected that the frequency of uncertainty
responses for the subjects that are capable of monitoring their
mental states will be higher for the objectively difficult items.

In the uncertainty-monitoring paradigm, it is adaptive for
subjects to decline trials that they are unsure of, because errors
can result in timeouts, unpleasant sounds, and (in humans) a
point loss. When subjects skip error-prone trials, they not only
avoid these negative consequences, but they also increase
their chance to earn points (in the case of humans) or pellets
(in the case of animals), because they don’t waste time on
timeouts. Therefore, using the uncertainty response for trials
that they cannot discriminate produces significant point gains
as compared to guessing.

Since the uncertainty-monitoring paradigm was proposed,
a number of studies have been conducted to investigate
whether animals have the ability to monitor their mental states
(e.g., Beran et al. 2006; Couchman, Coutinho, Beran, &
Smith, 2010; Shields, Smith, & Washburn, 1997; Smith
et al., 2006; Smith, Redford, Beran, & Washburn, 2010;
Smith et al., 1995; Smith et al., 1997; Smith, Shields, &
Washburn, 2003; Washburn, Gulledge, Beran, & Smith,
2010; Washburmn, Smith, & Shields, 2006). These studies have
demonstrated that monkeys (Macaca mullata), similar to
humans, used the uncertainty response adaptively—that is,
they used it to decline only the trials that were difficult and
prone to error. But despite the similarity in uncertainty
responding across species, the appropriate interpretation of
these findings is still sharply debated (e.g., Couchman et al.,
2010; Crystal & Foote, 2009; Hampton, 2009; Jozefowiez,
Staddon, & Cerutti, 2009; Smith, Beran, & Couchman,
2012; Smith, Beran, Couchman, & Coutinho, 2008). Some
researchers argue that uncertainty responding in animals re-
flects their ability to monitor their mental states, whereas
others believe it is based on perceptual, associative processes.

To clarify this issue, Smith, Coutinho, Church, and Beran
(2013) conducted a study to assess the role of executive re-
sources in uncertainty and perceptual responding in rhesus
monkeys. They hypothesized that if the uncertainty response
is a high-level decisional response, cognitive load should have
differential effects on uncertainty and perceptual responding:
It should disrupt uncertainty responding but not perceptual
responding, or at least not to the same degree. The results of
their study confirmed this hypothesis. These results provide
strong evidence that the uncertainty response is qualitatively
different from perceptual responses, and that monkeys may be
capable of monitoring their mental states.

In line with the findings from Smith et al. (2013), a study
conducted with humans showed that some metacognitive

judgments, such as tip-of-the-tongue states (TOTs), depend
on working memory resources (Schwartz, 2008).
Interestingly, a similar pattern of results was not observed
for FOKs. This dissociation suggests that different types of
monitoring judgments may tap different processes that are
more or less dependent on working memory resources.
Neuroimaging studies have also provided support for this
claim (e.g., Maril, Simons, Mitchell, Schwartz, & Schacter,
2003; Maril, Wagner, & Schacter, 2001). For instance, re-
searchers have reported differential patterns of neural activity
during TOT and FOK judgments. In particular, TOT judg-
ments were associated with an increase in neural activity in
regions that had been previously reported to be involved in
working memory activities, such as the anterior cingulate,
right dorsolateral, and right inferior prefrontal cortex regions
(see Ruchkin, Grafman, Cameron, & Berndt, 2003). On the
other hand, FOK judgments were mostly associated with dif-
ferences in neural activity within the left prefrontal and parie-
tal regions.

One possible reason why TOTs may depend on working
memory resources but FOKs do not is that TOTs, unlike
FOKSs, may be mediated by processes such as conflict detec-
tion and conflict resolution, which are both controlled (for
more information about controlled processes, see Shiffrin &
Schneider, 1977). These two processes may be essential for
TOTs because TOTs involve a conflict between what one feels
certain one knows and the incapacity to recall that informa-
tion, despite having a feeling of imminent recall. Additionally,
given that TOTs are commonly preceded by the retrieval of a
variety of information that is related to the to-be-recalled item,
in order for individuals to have TOTs, they first need to decide
whether the information retrieved is leading to the recall of the
target or interfering with it. Thus, they need to resolve conflict
about the value of the information being retrieved. On the
other hand, FOKs may be mediated primarily by interpreting
processing fluency, and with experience this may become au-
tomatic. Individuals may base their FOKs on how familiar or
how fluent the information to be remembered is, and this may
be a process that humans have lots of experience doing.

Evidence that metacognitive monitoring is resource-
consuming has also been demonstrated across individuals of
different ages during recall. Stine-Morrow, Shake, Miles, and
Noh (2006) tested younger and older adults on a memory task
that required them to make a metacognitive judgment before
they were asked to recall an item, or that did not require such a
judgment. They found that when older adults made these
judgments, performance level decreased, whereas no change
in performance was observed for the younger group. This
suggests that the act of monitoring one’s recall processes con-
sumes resources that would otherwise be employed in the
memory task.

Considering that different types of metacognition in
humans may be mediated by different processes and that
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uncertainty monitoring in monkeys clearly depends on work-
ing memory resources, it is important to ask whether the pro-
cesses supporting uncertainty monitoring in humans are sim-
ilar to those in animals. That is, does working memory also
play a role in uncertainty monitoring in humans? If it does, this
would suggest a possible continuity in the processes mediat-
ing uncertainty monitoring in humans and monkeys, which
could potentially shed light on the evolutionary development
of the metacognitive capacity.

To explore whether the processes supporting uncertainty
monitoring in humans are working memory intensive (as they
are in monkeys), we conducted three experiments assessing
the effects of concurrent load on uncertainty and perceptual-
middle responding at different levels of practice with these
responses.

Experiment 1

In Experiment 1, we evaluated the effect of a concurrent load
on uncertainty and middle responding during perceptual dis-
crimination learning. It was hypothesized that if uncertainty
responding draws resources from working memory (as it does
for monkeys), then concurrent load should reduce uncertainty
responding to a greater degree than middle responding.

In this experiment, participants performed a sparse—uncer-
tain—dense (SUD) or a sparse—middle—dense (SMD) discrim-
ination task with or without concurrent load. For the SUD
task, participants were asked to judge pixel boxes that varied
in difficulty as being either sparse or dense, and they were also
provided with an option of declining to make a response by
selecting the uncertainty response. They were told that this
response should be used when they were not sure to which
category the stimulus belonged, and it would help them gain
points by avoiding timeouts. Uncertainty responses were not
followed by a reward or a penalty; participants simply moved
on to the next trial. The pixel boxes were designated as sparse
or dense on the basis of their level of pixel density. Sparse
stimuli had between 1,085 and 1,550 pixels, whereas dense
stimuli had between 1,578 and 2,255 pixels. For the SMD
task, participants were asked to discriminate the same pixel
boxes into three categories (sparse, middle, and dense) by
selecting their corresponding responses (“sparse,” “middle,”
or “dense”). In this task, all three responses behaved in exactly
the same way—that is, correct responses resulted in a reward
and incorrect responses yielded a penalty. The sparse, middle,
and dense stimuli had between 1,085 and 1,470, 1,496 and 1,
636, and 1,665 and 2,255 pixels, respectively. Participants
performed the SUD or SMD task either alone or with a con-
current load. In the concurrent-load condition, participants
were presented with a pair of digits prior to each discrimina-
tion trial and were required to hold the size and value of two
digits in mind while making a discrimination response. This
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manipulation gave rise to four different conditions: uncertain
nonconcurrent (UN), uncertain concurrent (UC), middle non-
concurrent (MN), and middle concurrent (MC).

Method

Participants A total of 112 undergraduates from the
University at Buffalo participated in a 52-min session to fulfill
a course requirement. They were assigned randomly to the
uncertainty or middle task and to the no-concurrent-load or
concurrent-load condition. Participants who completed fewer
than 225 test trials in the task or who were not able to perform
above 60% correct at the five easiest trial levels at both the
sparse and dense ends of the stimulus continuum were not
included for further analysis. In the end, two participants from
the UC and ten from the MC condition were excluded on the
basis of these criteria. The data from 24, 26, 24, and 26 par-
ticipants, respectively, were included for analysis in the UN,
UC, MN, and MC conditions.

Design A 2 x 2 x 42 mixed factorial design was used, with
task (SUD and SMD) and condition (concurrent load and no
concurrent load) serving as between-participants variables and
stimulus level (1 to 42) serving as a within-participants vari-
able. The dependent variable was the proportion of interme-
diate responding (uncertainty and middle).

Stimulus continuum The discriminative stimuli were un-
framed 200 x 100 pixel boxes presented in the top center of
the computer screen. The area of the box was filled with a
variable number of randomly placed lit pixels. The pixel den-
sity of the boxes varied along a continuum running from 1,085
pixels (Level 1) to 2,255 pixels (Level 42). Given the maxi-
mum possible number of lit pixels (20,000), these pixel counts
corresponded to 5.4% density for the sparsest stimulus and
11.3% density for the densest stimulus. Each successive level
had 1.8% more pixels than the last. Each trial level’s pixel
count was given by the formula Pixelsy qye1= round(1,
066 x 1.018 “°**!) The sparsest and densest trials of the stim-
ulus continuum are shown in Fig. 1.

Sparse—uncertain—dense (SUD) task The participant’s task
was to identify boxes that had pixel densities falling within the
sparser or denser portion of the stimulus continuum. The first
21 trial levels—Level 1 (1,085 pixels) to Level 21 (1,550
pixels)—were designated sparse and were rewarded in the
context of “sparse” responses. The next 21 trial levels—
Level 22 (1,578 pixels) to Level 42 (2,255 pixels)—were
designated dense and were rewarded in the context of “dense”
responses. Of course, the trials near Level 1 and Level 42 were
easy sparse and dense trials, respectively. The trials near the
breakpoint of the discrimination, at Level 21-22, were the
most difficult.
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Fig. 1 Examples of the pixel box stimuli used in the present sparse—
middle—dense and sparse—uncertain—dense discriminations. Shown are
the easiest sparse trial level (Level 1) and the easiest dense trial level
(Level 42)

Along with the stimulus box on each trial, participants saw a
large S to the bottom left of the pixel box and a large D to the
bottom right of the pixel box. The uncertainty icon was a ?
placed below and between the S and D icons. These different
responses were selected by pressing labeled keyboard keys
arranged to duplicate the spatial layout of the response icons
on the screen. For correct and incorrect responses, respective-
ly, participants heard a computer-generated 0.5-s reward
whoop or an 8-s penalty buzz, they gained or lost one point,
and they saw a green or red text banner announcing “Right
Box” or “Wrong Box.” The next trial followed this feedback.
The uncertainty response did not bring either positive or neg-
ative feedback. It simply canceled the current trial and ad-
vanced the participant to the next randomly chosen trial.
Participants generally adaptively use this response for the dif-
ficult trial levels surrounding the discrimination breakpoint
(e.g., Smith et al., 2006). Participants were explicitly
instructed that they should use the ? key when they were not
sure how to respond, that it would let them decline any trials
they chose, and that it would let them avoid the 8-s error buzz
and the point penalty.

Sparse—middle—dense (SMD) task The participant’s task
was to identify boxes that had pixel densities falling within
the sparser, middle, or denser portion of the stimulus continu-
um. Eighteen trial levels—Level 1 (1,085 pixels) to Level 18
(1,470 pixels)—were designated sparse and were rewarded in
the context of “sparse” responses. Another 18 trial levels—
Level 25 (1,665 pixels) to Level 42 (2,255 pixels)—were
designated dense and were rewarded in the context of “dense”
responses. Six of the trial levels—Level 19 (1,496 pixels) to
Level 24 (1,636 pixels)—were designated middle and were

rewarded in the context of “middle” responses. We deliberate-
ly made the middle response region narrower than the sparse
and dense response regions, in order to equate the middle
response region with the levels of the stimulus continuum
where humans typically make uncertainty responses (Smith
et al., 2006; Smith et al., 1997; Zakrzewski, Coutinho,
Boomer, Church, & Smith, 2014).

The S and D icons were placed exactly as in the SUD task.
The M icon was located below and between the S and D icons,
exactly where the uncertainty icon was for the SUD task.
Participants made their responses by pressing labeled key-
board keys. Correct and incorrect responses generated the
same feedback as was described in the SUD task. The M
response also received this feedback.

Concurrent task The stimuli for the concurrent task were
digits that were presented at the top left and top right on the
computer screen. The two digits varied in physical size as
follows. One digit was presented in a large font within
Turbo-Pascal 7.0, and was about 3 cm wide and 2.5 cm tall
as it appeared on the screen. The other digit was presented in a
smaller font, about 1.5 cm wide and 1 cm tall on the screen.
The digits were never equal in size; participants were always
able to judge which digit was physically smaller or larger. The
two digits varied in numerical size from 3 to 7, and likewise
were never equal in quantity; participants were always able to
judge which digit was numerically smaller or larger.

On each concurrent-task trial, the two digits appeared at the
top left and top right on the monitor. After 2 s, the digits were
masked with white squares, then the digits and squares were
cleared from the screen. Participants had to remember the
digit-size and digit-quantity information until a memory cue
appeared in the top middle. The cue was “big size,” “big
value,” “small size,” or “small value.” Participants then were
supposed to select the response icon under the former position
of the physically or numerically bigger or smaller digit. For
correct and incorrect responses, respectively, participants
heard a computer-generated 0.5-s reward whoop or an 8-s
penalty buzz. Participants gained or lost two points for each
concurrent-task trial, and they saw text banners that said
“Right number”/“Wrong number.” The next trial followed this
feedback. The two-point gain/loss helped participants
focus effort and cognitive resources toward the concur-
rent task. We also motivated the participants to optimize
performance in the discrimination and concurrent tasks
by awarding $10 prizes to the one who earned the most
points in each condition.

Training trials Participants received 20 training trials that
taught either the sparse—dense or sparse-middle—dense dis-
criminations. These trials randomly presented the easiest
sparse/dense stimuli (Level 1, Level 42) in the case of the
SUD discrimination, and the easiest sparse/middle/dense
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stimuli (Level 1, Level 21, Level 42) in the case of the SMD
discrimination. Participants in the UC and MC conditions also
received 20 training trials on the concurrent task alone.

Test trials Following the training phase(s), participants re-
ceived discrimination trials that could vary in difficulty.
Now, the stimuli were chosen randomly from across the 42-
level continuum. Now, too, the uncertainty response became
available during discrimination trials for those participants in
the SUD task. Those in the nonconcurrent conditions (UN and
MN) received no simultaneous cognitive load. Those in the
concurrent conditions (UC and MC), however, experienced
memory and discrimination trials interdigitated as follows.
First, the memory digits were presented on the computer
screen for 2 s and then were masked and erased. Second, the
pixel box appeared on the screen along with the discrimination
response options, and participants made their response—
“sparse,” “dense,” or either “middle” or “uncertain,” as
allowed within their particular task assignment. Third, feed-
back for the discrimination trial was delivered. Fourth,
the memory cue and the memory-response options were
presented on the computer screen, and participants made
their response. Fifth, feedback for the memory trial was
delivered. After that, this cycle of trials was repeated
multiple times until the duration of the experimental
session was equal to 52 min.

Modeling performance and fitting data We instantiated for-
mal models of the present tasks. Our models were grounded in
signal detection theory (Macmillan & Creelman, 2005), which
assumes that performance in perceptual tasks is organized
along an ordered series (a continuum) of psychological repre-
sentations of changing impact or increasing strength. Here, the
contimuum of subjective impressions would run from clearly
sparse to clearly dense. Given this continuum, signal detection
theory assumes that an objective event will create subjective
impressions from time to time that vary in a Gaussian distri-
bution around the objective stimulus level presented. This
perceptual error is part of what produces errors in discrimina-
tion, and part of what may foster uncertainty in the task.
Finally, signal detection theory assumes a decisional process
through which criterion lines are placed along the continuum,
so that response regions are organized. Here, through the over-
lay of sparse—uncertain (SU) and uncertain—dense (UD)
criteria, for example, the stimulus continuum would be divid-
ed up into sparse, uncertain, and dense response regions.

Our models took the form of a virtual version of the tasks as
humans in the present studies would experience them. We
then placed simulated observers in those task environments
for 10,000 trials.

The simulated observers experienced perceptual error. The
value of perceptual error—that is, the standard deviation of the
Gaussian distribution that governed misperception—was one
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free parameter in our model. On each trial, given some stim-
ulus (Levels 1-42), simulated observers misperceived the
stimulus obedient to this Gaussian distribution. Given a per-
ceptual error of 4, for example, they could misperceive a Level
12 stimulus generally in the range of Level 8 to Level 16. This
misperceived level became the subjective impression on
which the simulated observer based its response choice for
that trial.

The simulated observers were also given individually
placed criterion points. The placements of the SU and UD
criterion points, or of the sparse-middle (SM) and middle—
dense (MD) criterion points, defined three response regions
for the simulated observer that determined its response choice
to a subjective impression. The placements of the SU and UD
(or SM and DM) criteria were two more free parameters that
could be adjusted to optimally fit the data.

To fit the observed performance, we varied a set of param-
eters of the model (i.e., perceptual error, the placement of the
lower criterion [SU, SM], and the placement of the upper
criterion [UD, MD]). The simulated observer’s predicted per-
formance profile was produced by finding its response pro-
portions for 42 stimulus levels for each of the parameter con-
figurations. We calculated the sum of the squared deviations
(SSD) between the corresponding observed and predicted data
points. We minimized this SSD fit measure to find the best-
fitting parameter configuration. For this best-fitting configu-
ration, we also calculated a more intuitive measure of fit—the
average absolute deviation (AAD). This measure represented
the average of the deviations between the observed and pre-
dicted response levels (with the deviations always signed pos-
itively). (For more information about the application of this
model in studies of human and nonhuman animal uncertainty
monitoring, see Smith et al., 2006; Smith et al., 2013)

Results

Overall statistical analysis: Uncertainty—middle
responding The participants in the UN, UC, MN, and MC
conditions completed on average 927, 345, 647, and 286 dis-
crimination trials, respectively. The participants in the concur-
rent conditions completed fewer discrimination trials than did
those in the nonconcurrent conditions because they also per-
formed the working memory task. The average proportions of
intermediate (uncertain or middle) responding for the four
conditions were .11, .02, .14, and .25, respectively.

To statistically explore the participants’ uncertainty and
middle responding across the four conditions, we conducted
a general linear model with level (1-42) as a within-
participants variable, and task (SUD and SMD) and condition
(nonconcurrent and concurrent) as between-participants vari-
ables. Figure 2 shows the four response curves overlain, to
help readers interpret the effects. All of the statistical analyses
had an alpha level of .05, two-tailed.
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Fig. 2 Mean proportions of “middle” or “uncertain” responses (black
circles), “sparse” responses (open diamonds), and “dense” responses
(open triangles) for the participants in each condition of the first

A main effect of trial level emerged, F(41, 3936)=43.19, p<
001, n,>=.31. This was due to the increase in the use of the
intermediate responses (‘“uncertain” or “middle”) for the trial
levels near the midpoint of the stimulus continuum. We also
found a main effect of task, F(1, 96)=77.67, p<.001, np2= A45.
Participants in the SUD and SMD tasks used their intermediate
responses at rates of .0575 and .2003, respectively. This effect
was modified by a task by condition interaction, F(1, 96)=
37.41, p< .001, np2: .28. Planned comparisons revealed that
concurrent load significantly decreased uncertainty responding
for the most difficult trial levels (Levels 19 to 24), #(48)=3.41,
p=.001, Cohen’s d= 0.959, whereas it increased middle
responding, #(48)= 3.81, p< .001, Cohen’s d= 1.08. Finally,
there were milder, intuitive interactions of task by level, F(41,
3936)=17.38, p<.001, np2= .15, and condition by level, F(41,
3936)=2.02, p<.001, np2= .02. These interactions signify that
the response curves in Fig. 2 were differentially affected across
levels by task (SUD vs. SMD) and by condition (concurrent vs.
nonconcurrent), because the task and condition dependent
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experiment: (A)uncertain—no concurrent load, (B)uncertain—concurrent
load, (C)middle-no concurrent load, (D)middle—oncurrent load

differences primarily affected the middle levels. No other sig-
nificant main effects and interactions emerged, all Fs<2.

Concurrent-task performance Performance on the memory
task was very high and did not differ on the basis of which task
participants performed, #(50)= 1.05, p=.29. The average pro-
portions correct for the SUD and SMD tasks were .91
(SD= .08) and .93 (SD= .05), Cohen’s d= 0.29, respectively.

Model fits We used signal detection theory to model group
performance for each of the four conditions. The best-fitting
predicted performance profiles for the four conditions are
shown in Fig. 3. The model yielded very good fits. The SSD
measures of fit were .0789, .0581, .0985, and .1418 for the
UN, UC, MN, and MC groups, respectively. The intuitive
measures of fit (AAD) for all four groups were less than .03
(i.e., .0207, .0161, .0207, and .0238). This means that the
model’s predictions had an error of less than 3% per data
point, on average.
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Fig. 3 Best-fitting predicted profiles for the four conditions of the first
experiment: (A)uncertain—no concurrent load, (B)uncertain—concurrent
load, (C)middle—no concurrent load, (D)middle—concurrent load. The
black circles illustrate the predicted proportions of intermediate

The model estimated that participants in the UN condition
placed their SU and UD criteria at Levels 20 and 23, whereas
participants in the UC condition placed both criteria at Level
20. This means that the UC group did not have an uncertainty
region; they simply stopped responding “uncertain.” For the
MN and MC groups, the model estimated that participants
placed their SM and MD criteria at Levels 19 and 24, and
Levels 14 and 24, respectively. Thus, the concurrent load in-
creased the middle region by five steps. The modeling con-
firms the statistical findings that the concurrent load affected
uncertainty and middle responding in opposite ways: It elim-
inated uncertainty responding but increased middle
responding.

To better understand whether this effect was due to differ-
ences in participants’ ability to discriminate the items across
the continuum, we looked at the perceptual error for each of
the four groups. The perceptual errors for UN, UC, MN, and
MC were 9, 8, 8, and 9, respectively. This means that each
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(uncertainty or middle) responding. The open diamonds and open
triangles show the predicted proportions of sparse and dense
responding, respectively

stimulus could have been misperceived by eight or nine steps.
For example, given a perceptual error of §, a stimulus of Level
10 could have been misperceived as any subjective stimulus
impression, generally, in the range of 2 to 18 on the 42-level
continuum. The similarity in the perceptual errors across con-
ditions suggests that concurrent load did not change partici-
pants’ perceptual processes.

Discussion

The results of Experiment 1 demonstrated that the concurrent
load significantly reduced the use of the uncertainty response,
whereas it increased the use of the middle response. These
results provide support for the hypothesis that the uncertainty
response is not simply a perceptual-middle response, although
both of them may rely on working memory resources. Most
importantly, the decrease in uncertainty responding is consis-
tent with the findings of Smith et al. (2013), showing a similar



Mem Cogn (2015) 43:990-1006

997

pattern in rthesus monkeys. The similarity between the results
of the present experiment and those from Smith et al. (2013)
may suggest that uncertainty monitoring in humans and mon-
keys taps similar working-memory-intensive processes.

The drop in uncertainty responding observed in the present
experiment may reflect participants’ inability to accurately
monitor their mental states when they did not have sufficient
cognitive resources available to employ. Or, it may reflect
their choice not to monitor their mental states, given that they
knew it was a cognitively demanding process. Regardless of
whether the drop in uncertainty responding was caused by a
deliberate strategy or by unintentional monitoring failure, it
suggests that uncertainty monitoring is working memory in-
tensive for humans, as it is for monkeys, even though
interpreting ease of processing in memory monitoring
(FOKs) is not (Schwartz, 2008).

In contrast to uncertainty responding, the proportion of mid-
dle responses increased with concurrent load: Participants
broadened the middle region by incorrectly assigning sparse
and dense stimuli to the middle category. The increased middle
responding with the introduction of concurrent load may reflect
decisional processes that change on the basis of the availability
of working memory resources. For instance, participants who
were tested with the concurrent load may not have noticed as
easily as the no-load participants that the middle region was
smaller than the sparse and dense regions. Thus, their represen-
tations of the middle region may have been broader than the
actual objective region because they assumed equal lengths for
the regions (sparse, middle, and dense) of the continuum. The
no-load participants had greater working memory resources to
allow them to hypothesis-test why they were initially getting
middle responses wrong. This would allow them to understand
that they needed to use the middle response more conservative-
ly than originally assumed. This would reduce their middle
responding and confine it to a more conservative region.
Perhaps the participants’ inability to easily consult their mental
states of uncertainty drive both the decrease in uncertainty
responding and the increase in middle responding, because par-
ticipants could not use their feelings of uncertainty about the
outer edges of the middle response to drive more conservative
responding.

It is also possible that the concurrent load affected middle
responding because the process of categorizing middle stimuli
was intrinsically very difficult. Only six stimulus levels
belonged to the middle category, and for this reason even the
middlemost middle stimulus (Level 21) was difficult to cate-
gorize, because this stimulus was only a few steps away from
the SM and MD boundaries. The same was not true for the
sparse and dense categories, because each of them included 18
stimulus levels. Thus, even if participants misperceived a
stimulus of Level 2 by eight steps, their response would still
be correct, because a stimulus of Level 10 was also sparse. On
the other hand, if participants misperceived a middle stimulus

of Level 21 as Level 29, their response would be incorrect,
because a stimulus of Level 29 was dense. Given that, middle
responding may require considerably more careful decisional
processes than sparse and dense responding, and therefore
may require more working memory in order to choose to
respond more conservatively.

In many respects the present findings are similar to those
found with rhesus monkeys, and the methodologies in the
human and monkey experiments have many similarities.
Therefore, there is reason to suggest that some uses of the
uncertainty response are working memory intensive for
humans, as they are for monkeys. Our findings also comple-
ment those of Zakrzewski et al. (2014), who showed that
uncertainty responses, but not primary perceptual responses,
were reduced by strict response deadlines. Thus, uncertainty
responses, at least in some uses, may be more working mem-
ory and time intensive.

However, there is an important difference between the
monkey experiments and the experiment described here: The
monkeys had significant experience with the uncertainty and
middle responses before the concurrent load was introduced to
the task. The humans in the present study had no experience
with the uncertainty response prior to test, but they were fa-
miliarized with the middle response beforehand. As a result,
the differential training with these two responses may possibly
have interacted with the effect of concurrent load; participants
had to learn the functionality of the uncertainty response while
they had a memory load. This was not true for the perceptual
responses including the middle response, which had a short
training session before the concurrent load was introduced. To
clarify this issue, we conducted two other experiments.

Experiment 2

In Experiment 2, we carefully equated the initial experience
with the middle and uncertainty responses so that both groups
had the same experience with the responses and clearly knew
their functions before testing. We did this to rule out the pos-
sibility that the dissociation between uncertain and middle
responding observed in Experiment 1 was due to differential
training with these responses.

Methods

Participants A total of 118 undergraduates participated to
fulfill a course requirement. They were assigned randomly
to the conditions. Six participants were excluded from the
analysis on the basis of the same criteria used in Experiment
1 (two MN, one MC, one UN, and two UC). Twenty-eight
participants in each condition were included in the analyses.
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Design, stimuli, and procedures The design, stimuli, and pro-
cedures were identical to those of Experiment 1, except for a
couple of small changes in the training procedure for the SUD
and SMD tasks. The first change was that both tasks included
Levels 1, 21, 22, and 42. Previously, the SUD had included
Levels 1 and 42 only, and the SMD task included Levels 1, 21,
and 42. The second change was that the uncertainty response was
available during training for the SUD task. These two changes
were made so that participants had comparable experience with
the uncertainty and middle responses during training.

Results

Overall statistical analysis: Uncertainty—middle
responding Participants completed, on average, 933 and
669 discrimination trials in the UN and MN conditions, and
311 and 296 trials in the UC and MC conditions. Participants
in the SUD task declined to answer 10% of the trials across the
42-level continuum when tested without a concurrent load,
and 3% of the trials when tested with a concurrent load.
Participants in the SMD task, on the other hand, increased
middle responding by 7% with the introduction of a concur-
rent load (from 7% to 14%).

As in Experiment 1, we conducted a general linear model
to measure participants’ intermediate responding across the
four conditions. In general, the results of the analysis were
very similar to those of Experiment 1. As before, we found
an effect of trial level, F(41,2952)=4.407, p<.001, np2= .04,
and an effect of task, F(1, 72)="7.45, p=.007, np2= .06. These
results show that participants used the intermediate responses
more often for trial levels near the midpoint of the stimulus
continuum, and that on average they responded “middle”
more frequently than they did “uncertain” (Fig. 4). In addition,
we found an interaction involving task by level, F(41, 2952)=
1.89, p= .001, np2: .02. This interaction indicated that the
patterns of intermediate responding across levels varied be-
tween tasks (SUD and SMD). Most importantly, the analysis
revealed a task by condition interaction, F(1, 72)= 12.38,
p=.001, np2= .10, and a task by condition by level interaction,
F(41,2952)=1.85, p=.001, np2= .02. These results show that
the concurrent load affected uncertainty and middle
responding differently across levels. Planned comparisons re-
vealed that the concurrent load reduced uncertainty
responding from .16 to .03, #(54)= 3.5, p= .001, Cohen’s
d=0.936, for the most difficult trial levels (Levels 19 to 24),
but it increased middle responding, from .15 to .28, #(54)=2.4,
p=.02, Cohen’s d= 0.642, for the same levels.

Concurrent-task performance Performance in the working
memory task was relatively high and did not differ between
the SUD and SMD tasks, #(54)= 0.12, p=.9. The average
proportions correct were .93 (SD= .04 and .03), Cohen’s
d=0.03, for participants in both the SUD and SMD tasks.
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Model fits As in Experiment 1, we used a signal detection
theory model to fit the group performance for each of the
conditions (UN, UC, MN, and MC). Figure 5 shows the
best-fitting performance profiles for the modeling data. As
before, the model produced very good fits. The SSD measures
of fit were .0704, .1169, .0622, and .0765 for the UN, UC,
MN, and MC conditions, respectively. The ADD measures of
fit were once again very small. They were .0188,.0237,.0173,
and .0198 for the UN, UC, MN, and MC conditions,
respectively.

The model estimated that participants in the UN condition
placed the SU criterion at Level 20 and the UD criterion at
Level 23. Analogous to Experiment 1, the estimated SU and
UD criteria for participants in the UC condition were both
placed at Level 20. For the MN and MC conditions, the esti-
mated SU and UD criteria were placed at Levels 20 and 22,
and 18 and 23, respectively. As we observed before, the un-
certainty region narrowed and the middle region widened with
the introduction of the concurrent load. The perceptual errors
for the UN, UC, and MC conditions were 9, and for the MN
condition the perceptual error was 8. This suggests that par-
ticipants misperceived the items at equivalent rates.

Discussion

Experiment 2 demonstrated that even when participants were
exposed at the same rate to middle and uncertainty responses
during training, the effects of the concurrent load on these
responses differed. Middle responding increased with load,
whereas uncertainty responding decreased. This study thus
replicated the findings of Experiment 1, indicating that the
dissociation first observed between uncertainty and middle
responding was not due to differential training of these two
responses, but instead to qualitative differences between them.

One hypothesis that has not been discussed yet relates to
the usefulness or importance of the different responses. The
middle response, unlike the uncertainty response, may seem
essential for accomplishing the goal of the task—that is, clas-
sifying the stimuli into three groups (sparse, middle, and
dense). On the other hand, because the uncertainty response
is not tied to any stimuli via contingencies of reward, its role
within the SUD may seem optional. This hypothesis is in line
with recent findings showing that people are inclined to drop
criteria that are not essential for reaching a task goal under
conditions of cognitive load (Benjamin, Diaz, & Wee, 2009;
Benjamin, Tullis, & Lee, 2013). Given this, it is important to
note that the real probabilities of this task made the uncertainty
response the more important response to keep. However, mid-
dle responses increased and their response region broadened,
whereas uncertainty responding was eliminated. Because the
middle region was small, this broadened response only in-
creased the possible points by a small amount, as compared
to dropping middle responses altogether. On the other hand,
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Fig. 4 Mean proportions of “middle” or “uncertain” responses (black
circles), “sparse” responses (open diamonds), and “dense” responses
(open triangles) for the participants in each condition of the second

dropping the uncertainty response decreased the possible
points that could be earned by more than twice as much as
dropping the middle response, if the uncertainty response
were similarly overused (more than a three-times point reduc-
tion, with optimal use). This difference seems to suggest that
the processes required for the uncertainty response created a
larger burden than did middle responding. Even though it was
more important for optimization, it nonetheless got dropped.

The methodology of the present experiment was more sim-
ilar to the one used with monkeys (Smith et al., 2013), given
that participants were equally exposed to the uncertainty and
middle responses during training. But one important differ-
ence between these studies was that humans had very little
practice with the uncertainty response (20 trials) prior to the
test phase, whereas monkeys needed to show proficiency with
using the uncertainty response in order to be tested with the
concurrent load. (In Smith et al., 2013, the two monkeys
performed at least 983 and 1,517 discrimination trials before
being tested with the concurrent task.) For monkeys, it is clear
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experiment: (A)uncertain—no concurrent load, (B)uncertain—concurrent
load, (C)middle—no concurrent load, (D)middle—oncurrent load

that uncertainty monitoring is working memory intensive,
even with extensive practice with the uncertainty response.
On the other hand, whether humans would continue to find
uncertainty responding demanding after more practice was
less clear. To explore the working memory demands of uncer-
tainty monitoring in a discrimination task that included highly
practiced monitoring, we conducted a third experiment.

Experiment 3

The purpose of Experiment 3 was to examine the effect of
concurrent load on uncertainty and middle responding after
participants had plenty of experience (like the monkeys) with
these responses. To do so, we added 150 training trials to the
20 training trials that had been included in Experiment 2. In
addition to increasing the number of training trials, we provid-
ed participants with information about their current level of
performance on these trials. At the end of every 50-trial block
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Fig. 5 Best-fitting predicted profiles for the four conditions of the second
experiment: (A)uncertain—no concurrent load, (B)uncertain-concurrent
load, (C)middle—no concurrent load, (D)middle—concurrent load. The
black circles illustrate the predicted proportions of intermediate

of the 150 training trials, the total number of points gained,
lost, and the potential points saved (in the case of the SUD
task) by uncertainty responding were displayed on the screen.
This feedback was added to the task with the aim of teaching
participants about the functionality and benefits of the various
responses. The increase in training trials and the inclusion of
performance summaries allowed us to test whether uncertain-
ty responses are still working memory intensive after the task
and all its possible responses are well trained.

Method

Participants A total of 168 undergraduates participated to
fulfill a course requirement. Participants were randomly
assigned to the conditions, and those who completed fewer
than 150 test trials or who were not able to perform above 60%
correct with the five easiest sparse or dense trial levels were
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responding, respectively

excluded (three UC, one MN, and four MC). Forty partici-
pants from each condition were included in the analysis.

Design, stimuli, and procedure The design, stimuli, and pro-
cedures were the same as in Experiment 2, except that all partic-
ipants received 150 additional training trials that included stimuli
from the entire continuum. This greater training resulted in some-
what fewer test trials, because the amount of time on task stayed
the same. Along with the standard trial-by-trial feedback, partic-
ipants also received a summary feedback after completing a
block of five trials during the additional 150 training trials.

Results

Overall statistical analysis: Uncertainty—middle
responding The average numbers of discrimination trials
completed by participants in the SUD and SMD tasks without
and with load were 714, 608, 457, and 376, respectively. The
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rates of uncertainty and middle responding for the concurrent
and nonconcurrent conditions were .12 and .08, and .09 and
.08, respectively.

As before, we conducted a general linear model to measure
participants’ intermediate responding across the four condi-
tions. As in Experiments 1 and 2, we found an effect of level,
F(41, 6396)=54.4, p< .001, n2= .26, reflecting the increase in
intermediate responding for the trial levels near the midpoint
(Fig. 6). In contrast to the previously reported findings, no effect
of task or task by condition interaction was apparent.
Participants used the intermediate responses at similar rates
across tasks, F(1, 156)= 1.02, p= 315, n°= .01, and the pro-
portions of intermediate responding did not reliably vary on the
basis of concurrent load, F(1, 156)= 1.48, p= 225, n*= .01.
The proportions of uncertainty responses across all 42 trial
levels went from .12 to .08, #78)= 1.7, p= .09, Cohen’s
d= 0.336, with the introduction of concurrent load, and the
proportions of middle responses went from .09 to .08, #78)=
0.6, p= .3, Cohen’s d= 0.148. In addition, a significant
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Fig. 6 Mean proportions of “middle” or “uncertain” responses (black

circles), “sparse” responses (open diamonds), and “dense” responses
(open triangles) for the participants in each condition of the third

condition by level interaction emerged, F(41, 6396)= 1.67,
p= .04, n*= .01, and a significant condition by level by task
interaction, F(41, 6396)= 1.59, p= 009, n°= .01. These inter-
actions reflect the differential effects that the concurrent load
had on the patterns of uncertain and middle responding across
levels. In order to better understand these differential effects on
the patterns, we conducted separate analyses looking at condi-
tion and stimulus level within each task. These analyses re-
vealed no main effect of condition or level by condition inter-
action for the SMD task, Fs<1. On the other hand, the effect of
condition for the SUD task approached significance, F(1, 78)=
2.93, p=.09, %= .04, and the pattern of uncertainty responding
across trial levels varied depending on condition, F(41, 3198)=
2.14, p< .001, 1= .03. These results showed that although the
concurrent load affected uncertainty responding differently
across levels, it did not influence middle responding. To better
understand the effect of concurrent load on uncertainty
responding, we conducted planned comparisons like those done
in Experiments 1 and 2. This analysis showed that unlike in

b Humans: Uncertain Concurrent

1 AAA
00000000 AAAMAAA
%00
O AAA
5§ 0.75 - o e
Fa Sparse %o A Dense
2 A
o o
& o5 | 0o AA
4 o
= s
g A AA o°
& 025 - SR
o0 o g
570 @ oeeb Uncertain
A L ]
o0o® *tece
05 9,
0 7 14 21 28 35 42
Density Level
d Humans: Middle Concurrent
1 ‘OOOOO AAAA AAAAAA
0000 o A
o An
5
§ 075 - Sparse 0 A Dense
= A
G ° A
& o
Pl o AA
& 05 - S a
2 4
<]
] 50
0.25 -
4 A U
000" ¢°  Middle
“g&m %00,
0 ssasetee’ ® _e%env0ag

0 7 14 21 28 35 42
Density Level

experiment: (A)uncertain—no concurrent load, (B)uncertain—concurrent
load, (C)middle—no concurrent load, (D)middle—oncurrent load
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Experiments 1 and 2, the concurrent load only marginally sig-
nificantly reduced uncertainty responding for the most difficult
trial levels, #78)=1.78, p=.078, Cohen’s d= 0.398, and had no
effect on middle responding, 1<1. Post-hoc tests revealed that
the significant interaction between condition and level for the
SUD task was caused by a decrease in uncertainty responding
for Levels 19, 20, and 25 (p< .05). Taken together, these results
indicate that when participants received more practice with the
responses, the effect of concurrent load on the middle response
disappeared and the effect on the uncertainty response was
smaller.

Concurrent-task performance Performance on the concur-
rent task did not vary on the basis of task (SUD and SMD),
t<1. It was .89 (SD=.09), Cohen’s d= 0.003, for the partici-
pants in both groups.

Model fits For this experiment, we also used the signal de-
tection theory model to fit the data for all conditions. The
predicted values of the model for each of the four groups
(UN, UC, MN, and MC) are shown in Fig. 7. The SSD mea-
sures of fit were .0434, .0741, .0615, and .061 for the UN, UC,
MN, and MC conditions, respectively. The AAD measures of
fit were .0141, .0184, .0171, and .0168 for the UN, UC, MN,
and MC conditions, respectively. These were excellent fits.

The model estimated that participants in the UN condition
placed their SU and UD criteria at Levels 20 and 24, and par-
ticipants in the UC condition placed them at Levels 19 and 22.
The uncertainty region thus went from four to three levels wide
with the introduction of the concurrent load. The concurrent
load barely disrupted uncertainty responding in the SUD task.
For the MN and MC groups, the model estimated that partici-
pants placed their SM and MD criteria at Levels 20 and 23, and
Levels 20 and 22, respectively. The concurrent load also barely
changed intermediate responding in the SMD task. Both the
uncertainty response and the middle response, once fully
trained, were robust in the face of the concurrent load.

The perceptual errors were 8 for both the UN and UC
groups, and 7 for both the MN and MC groups. The partici-
pants in the load and no-load conditions misperceived items to
similar degrees.

Discussion

Experiment 3 demonstrated that when participants receive more
training, both intermediate responses continue to be used in the
same ways, even when a working memory load is imposed.
These results differ from the findings in Experiments 1 and 2
of a decline in uncertainty monitoring and an increase in middle
responding with load; both effects disappeared with more
pretraining. A plausible explanation for the disappearance of
the uncertainty response is that the processes mediating uncer-
tainty monitoring in humans became more robust and skilled
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because—in a sense—they were automatizing. The idea that
with practice, uncertainty monitoring places fewer demands
on the cognitive system is in line with Koriat and colleagues’
proposal that metacognitive judgments are supported by two
distinct processes: a controlled one that prevails during early
stages of learning, and an experience-based one that is predom-
inant during later stages of learning (Koriat, 1997; Koriat,
Nussinson, Bless, & Shaked, 2008). Humans may base their
uncertainty judgments at first on explicit evaluations of their
ability to discriminate different types of stimuli, but over time
they come to rely more on interpreting the speed or strength
with which a particular response pulls them. This could be
thought of as a type of response fluency, and it may be less
working memory intensive.

However, it is also possible that participants do not change the
way that they make their metacognitive judgments with learning,
but rather that uncertainty judgments are always made on the
basis of response fluency. With more training, perceptual dis-
crimination improves, increasing perceptual-response fluency
and making the judgment easier. This increase in correct percep-
tual discrimination could also explain the stabilization of the
middle response. However, our signal detection theory modeling
suggests that the differences in actual discrimination ability (re-
ductions in perceptual error) between the groups with more or
less training were quite small (seven or eight steps, vs. eight or
nine steps). This suggests that although increases in perceptual
discrimination may contribute to the stabilization of both re-
sponses, changes in decision processes with learning are proba-
bly necessary to fully explain the findings.

Another alternative hypothesis is that what people learn with
more training is that the uncertainty response is objectively use-
ful, and so they should try to maintain it even under load. As we
pointed out earlier, this means that uncertainty monitoring is
inherently resource intensive and that participants are aware of
this, choosing either to let the response go or maintain it. It is true
that with more training and the possibility of summary feedback,
participants have more experience with how much they can im-
prove performance if they use the uncertainty response. This may
have increased their motivation to maintain a resource-intensive
response, explaining why there was still a small drop in the
uncertainty response but no sign of an increase in the middle
response. Once participants have realized that their criteria for
the middle response need to be more conservative, the working-
memory-demanding job is done. However, if judging uncertainty
still makes a demand, it must share resources. If this hypothesis is
correct, then the processes involved in uncertainty monitoring do
not become less resource demanding with learning, but rather,
people learn (or choose) to share their limited resources more
evenly. This would suggest that this relatively simple form of
monitoring is very demanding on working memory resources,
even after training. The small drop in concurrent-task accuracy
between Experiments 2 and 3 (93% vs. 89%) might be taken as
supporting evidence for this. However, it is important to interpret
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Fig. 7 Best-fitting predicted profiles for the four conditions of the third
experiment: (A)uncertain—no concurrent load, (B)uncertain—concurrent
load, (C)middle—no concurrent load, (D)middle—concurrent load. The
black circles illustrate the predicted proportions of intermediate

this performance cautiously, because this small difference is well
within the normal variance, and the research examining FOK and
confidence ratings suggests that the ability to interpret memory
fluency is not particularly resource demanding (Mickes, Hwe,
Wais, & Wixted, 2011; Mickes et al. 2007; Schwartz, 2008).
This hypothesis about uncertainty monitoring is possible.
However, since it is not clear why such monitoring should
be more demanding than other forms of monitoring (FOK),
the present experiment cannot reasonably lead to this
claim.

General discussion

Three experiments were conducted to examine the role of
working memory resources in uncertainty monitoring in
humans. To investigate this issue, participants were tested
with or without a concurrent load on a psychophysical
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(uncertainty or middle) responding. The open diamonds and open
triangles show the predicted proportions of sparse and dense
responding, respectively

discrimination task including either an uncertainty or a middle
response. Experiment 1 demonstrated that with limited task
experience, concurrent load significantly reduced uncertainty
responding whereas it increased middle responding, suggest-
ing that although these two responses are qualitatively differ-
ent, they may both place demands on working memory.
Middle responding may rely on working memory resources
because the decisional processes involved in categorizing
middle stimuli are inherently very difficult, since participants
need to attend to very small variations in density level across
stimuli. Only six stimuli within the 42-level continuum were
middle, and even the easiest of these stimuli (Level 21) was
difficult to categorize, because it was only a few steps away
from the SM and MD boundaries. With regard to the drop in
uncertainty responding, it was unclear whether this occurred
because concurrent load interfered with participants’ ability to
monitor their states of uncertainty during the early stages of
learning or because it prevented them from learning the utility
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of the uncertainty response. The results of Experiments 2 and
3 provided support for the former explanation. In Experiment
2, in spite of knowing the function and utility of the uncertain-
ty response, and being told that using it for difficult trials
would help them gain points, participants were still unable
to use it optimally when tested with a concurrent load.
Furthermore, Experiment 3 showed that when participants
received more training with the uncertainty response, the ef-
fect of concurrent load on uncertainty responding was rela-
tively small. These results suggest that uncertainty monitoring
places demands on working memory, but that the level of the
demands may decrease as a result of practice with the task or
with the uncertainty response, or with both. It is also possible
that uncertainty monitoring remains working memory inten-
sive even after practice, but that people understand its utility
better, and so deliberately distribute their resources between
tasks. Either way, it is clear that uncertainty monitoring places
demands on working memory.

Given the evidence that training can reduce a task’s de-
mands on working memory (e.g., Ruthruff, Johnston, & Van
Selst, 2001; Ruthruff, Van Selst, Johnston, & Remington,
2006; Van Selst, Ruthruff, & Johnston, 1999), and the evi-
dence that well-practiced memory-monitoring abilities such
as confidence judgments require fewer resources (Mickes
et al., 2011; Mickes et al., 2007), it could be considered sur-
prising that such a basic monitoring ability as judging uncer-
tainty ever makes demands on working memory resources in
healthy adult humans. However, the empirical evidence from
these experiments is clear. Whether people choose to avoid
making uncertainty judgments or are unable to make them
when working memory is stressed, at least in a new discrim-
ination task, monitoring uncertainty and acting on it place
demands on working memory. This finding has important
implications for understanding our ability to make
metacognitive judgments about perception under different sit-
uations. It also shows a striking similarity with uncertainty
monitoring in monkeys, even though the monkeys have much
less working memory capacity.

The findings of the present study, along with those of Smith
et al. (2013), showed that working memory resources seem to
play a critical role in uncertainty monitoring in humans and
monkeys, even though these roles are not exactly the same.
These results suggest some continuity in the processes
supporting uncertainty monitoring across species, though
humans seem to be much more able to automate (or success-
fully to share resources with) these initially working-memory-
intensive processes than are monkeys. This interpretation is in
line with Charles Darwin’s statement in The Descent of the
Man that “the difference in mind between man and the higher
animals, great as it is, is certainly one of degree and not of
kind” (1871/2006, p.837).

Given the similarities between the results of the present
experiment and those from Smith et al. (2013), it is possible

@ Springer

that working memory resources are one of the factors
supporting the development of metacognition in animals and
humans. It is possible that the development of metacognitive
capacity relies on the development of working memory. Thus,
smaller and less efficient forms of working memory may give
rise to less sophisticated forms of metacognition. To better
understand the role of working memory resources in the de-
velopment of metacognition, future studies should look at the
relationship between these resources and uncertainty monitor-
ing in primates that are evolutionarily closer to humans, such
as orangutans, gorillas, chimpanzees, and bonobos. These
studies could shed light on the evolutionary origins of
metacognition.

Furthermore, the present study makes an important contri-
bution to research in human metacognition. It complements
studies showing that sophisticated forms of metacognitive
judgments (e.g., JOLs, TOTs, and FOKs) place different de-
mands on working memory, by showing that more basic forms
of metacognition (uncertainty responding) also place these
demands (although primarily during unpracticed stages).
Considering these findings, it is important to ask what leads
some metacognitive judgments to be more demanding than
others, and why uncertainty monitoring places different de-
mands over the course of learning. Is this change caused by a
shift from controlled processes to less controlled ones? Does it
reflect a reduction in the resources needed to perform the
monitoring, or is it a shift in the willingness to share limited
resources? Future research will be needed to fully understand
the nature of these learning-related changes. We believe that
this type of research may further clarify issues regarding the
emergence of more sophisticated forms of metacognition,
such as those observed in humans, and the role of working
memory in these processes.

Author note The preparation of this article was supported by Grant
Number 1ROIHD061455 from NICHD and Grant Number BCS-
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