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Research Article

Categorization is an essential cognitive function and a 
focus of cognitive research (e.g., Ashby & Maddox, 2010; 
Brooks, 1978; Feldman, 2000; Knowlton & Squire, 1993; 
Medin & Schaffer, 1978; Murphy, 2003; Nosofsky, 1987; 
Smith, Redford, & Haas, 2008). A lasting issue is whether 
one or multiple category-learning systems are necessary 
to account for the diverse categorization abilities of 
humans. A similar issue has been debated in the memory 
literature. In fact, these debates are related because pro-
posed category-learning systems might map onto pro-
posed memory systems (Ashby & O’Brien, 2005). Learning 
is a process of laying down memory traces, and there 
seems no reason why memory systems should not also 
learn categories. In that case, there may be as many cat-
egory-learning systems as memory systems. In the 
research reported here, we tested for multiple category-
learning systems using a distinctively new paradigm.

Categorization researchers have described trade-offs 
that seem to support the hypothesis that there are multi-
ple systems. For example, different processes seem to 
dominate categorization at early versus late stages of cat-
egory learning (Cook & Smith, 2006; Smith, Chapman, & 
Redford, 2010; Smith & Minda, 1998; Wasserman, 
Kiedinger, & Bhatt, 1988), categorization of small versus 
large categories (Blair & Homa, 2003; Homa, Sterling, & 
Trepel, 1981; Minda & Smith, 2001), and categorization 
based on rules that are easy versus difficult to describe 
verbally (Ashby & Maddox, 2010). A growing consensus 
ascribes to humans multiple categorization capacities 
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The controversy over multiple category-learning systems is reminiscent of the controversy over multiple memory 
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(e.g., rule learning, prototype abstraction) that specialize 
in different aspects of learning and rely on different forms 
of memory (Ashby, Alfonso-Reese, Turken, & Waldron, 
1998; Ashby & Ell, 2001; Erickson & Kruschke, 1998; 
Homa et al., 1981; Maddox & Ashby, 2004; Rosseel, 2002; 
Smith et al., 2012; Smith & Minda, 1998). Even so, some 
researchers question multiple-system interpretations of 
some results (e.g., Nosofsky & Johansen, 2000), and oth-
ers argue that all categorization phenomena can be 
explained using a unitary, exemplar-based process in 
which every previously seen exemplar from all relevant 
categories is accessed and compared with the current 
stimulus before a category judgment is made (e.g., 
Newell, Dunn, & Kalish, 2010; Nosofsky, Stanton, & Zaki, 
2005). Our research helps resolve this issue.

Rule-Based and Information-
Integration Categorization

Our empirical approach draws on the cognitive neurosci-
ence of categorization (Ashby & Ell, 2001; Ashby & 
Valentin, 2005; Maddox & Ashby, 2004). This area distin-
guishes an explicit categorization system that recruits 
declarative memory from an implicit system that recruits 

procedural memory. The explicit system learns by actively 
testing hypotheses using working memory and executive 
attention. It learns quickly, through sudden realizations 
of category rules that participants easily describe ver-
bally. For example, people explicitly know a square’s 
defining characteristics. In contrast, the implicit system 
learns associatively through procedural-learning pro-
cesses akin to conditioning. It learns slowly, relying on 
temporally contiguous reinforcement signals. Participants 
generally cannot describe their implicit categorization 
strategies. For example, people correctly categorize 
wolves and German shepherds, but they do not easily 
explain how they do so.

Much of the evidence for these systems comes from 
rule-based (RB) and information-integration (II) cate-
gory-learning tasks (Fig. 1). Each exemplar in these tasks 
is defined by its values on perceptually separable X and 
Y dimensions. For example, each stimulus might be a 
single line that varies across trials in length (Dimension 
X) and orientation (Dimension Y). In Figure 1, the gray 
and black symbols, respectively, denote the dimensional 
values of specific Category A and Category B members. 
Figure 1a shows possible stimuli for an RB task. Only 
variation in X carries valid category information; low and 
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Fig. 1.  A rule-based category structure (a) and an information-integration category structure (b), depicted within an abstract 101 × 101 
stimulus space.
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high values on Dimension X define Category A and B 
members, respectively. The participant must discover this 
rule from successive presentations of single category 
exemplars with feedback. This is an RB task because the 
solution is a one-dimensional rule. The rule is explicit 
because it can be verbalized and is discoverable through 
explicit hypothesis testing.

In Figure 1b, Dimensions X and Y carry partially valid 
category information. To categorize stimuli accurately, 
the participant must learn some principle of dimensional 
integration. This is an II task. One-dimensional rules are 
not optimal. A vertical or horizontal category boundary 
will not partition the categories sufficiently and will cause 
errors. The cognitive system accomplishes dimensional 
integration, but it does so implicitly and procedurally. 
Humans cannot explain their solution of an II task ver-
bally, especially when the stimulus dimensions are in dif-
ferent units (e.g., length and orientation).

The RB and II tasks are elegant mutual controls. They 
are matched for category size, within-category exemplar 
similarity, between-category exemplar separation, class 
discriminability (e.g., d′), and the proportion correct 
that is achievable by an ideal observer. The category 
structures in Figure 1 are simply rotations of one another 
through stimulus space. Therefore, there is no objective, 
a priori difference in difficulty between RB and II tasks. 
Smith et al. (2011) confirmed this equivalence by show-
ing that pigeons (Columba livia) learn RB and II tasks 
equally well and at the same rate. Pigeons may learn 
these tasks at the same rate because they lack an explicit 
category-learning system that selectively advantages RB 
category learning. Humans generally learn RB tasks 
faster than II tasks, perhaps because they have that 
explicit system. If humans’ learning-rate difference arose 
because the II task is inherently difficult, then a less 
cognitively sophisticated species (pigeons) should be 
more challenged on the II task (relative to the RB task) 
than humans are. That pigeons learn the tasks at the 
same rate is strong evidence that humans’ learning-rate 
difference arises because they learn the tasks differently, 
not because one task is difficult. In the same way, mul-
tiplication is faster than repeated addition, not because 
it is easier, but because it is a different process that 
unfolds differently.

Many dissociations between RB and II category learn-
ing have been demonstrated. For example, II learning is 
selectively impaired when reinforcement on categoriza-
tion trials is delayed for several seconds (Maddox, Ashby, 
& Bohil, 2003; Maddox & Ing, 2005), when learning is 
unsupervised (Ashby, Queller, & Berretty, 1999), and 
when category knowledge is imparted observationally, 
not through trial-based reinforcement (Ashby, Maddox, & 
Bohil, 2002). II learning is apparently served by a cascade 

of temporally constrained events (perception, response 
selection, reinforcement—Maddox & Ashby, 2004).

In contrast, RB category learning may be more robust 
to reinforcement delays, unsupervised learning condi-
tions, and so forth. RB learning may rely on hypotheses 
actively held in working memory. Other dissociations—
for example, that RB learning is selectively hurt when 
working memory resources are occupied by a concurrent 
task—support this idea (Waldron & Ashby, 2001). 
Consequently, RB learning potentially has great flexibility 
in application. Because its category knowledge is held in 
declarative consciousness, it can be applied or adjusted 
before, during, or after a trial, and possibly even after the 
outcomes from several trials.

No single-system model and no simple difficulty 
hypothesis that has been proposed can account for even 
a few of the dissociations between RB and II category 
learning that have been reported. In contrast, the multi-
ple-systems framework described here essentially pre-
dicts all of these dissociations a priori.

The evidence for multiple systems notwithstanding, 
the theoretical stakes are high, just as when the possibil-
ity of multiple memory systems emerged. Some categori-
zation researchers apply a strict parsimony standard to 
defend a single-system account of categorization, and 
work continues to definitively evaluate the multiple-sys-
tems framework. Here, we introduce a new empirical dis-
sociation that may qualitatively distinguish implicit and 
explicit categorization. The temporal constraints and flex-
ibility of II and RB category learning, respectively, are 
crucial to the present test of the implicit-explicit frame-
work in categorization.

A New Empirical Approach

Our paradigm incorporates a technique from recent 
cross-species studies (e.g., Smith, Beran, Redford, & 
Washburn, 2006). Smith et al. sought to prevent monkeys’ 
associative learning, to keep them from using trial-by-trial 
reinforcement to form stimulus-response linkages. The 
idea was to see if macaques, like humans, could supply 
instead their own cognitive construal of a task. Yet the 
researchers also had to include enough reinforcement to 
sustain the animals’ participation.

The technique of deferred-rearranged reinforcement 
(hereafter, deferred reinforcement) met these require-
ments. Monkeys completed trial blocks with no feedback. 
At each block’s end, they received together the reinforce-
ments from all correct trials and then together the time-
outs from all error trials. The processes of conditioning 
were defeated. The monkeys could not know which stim-
uli and responses they had gotten wrong or right. They 
could not learn stimulus-response pairs associatively. 
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Smith et al. (2006) showed that this technique did make 
the task’s associative structure invisible for at least one 
macaque who clearly supplied his own cognitive construal 
instead.

Predictions

This technique is ideally suited for studying and possibly 
dissociating RB and II category learning. Deferred rein-
forcement should defeat the reinforcement-based pro-
cesses underlying II learning. One prediction of our study 
was that II learning would collapse under deferred rein-
forcement. In contrast, RB learners—by current theory—
would have in mind their hypothesis and could evaluate 
its success at block’s end just as at trial’s end. Thus, a 
second prediction was that RB learning would flourish 
under deferred reinforcement.

Finally, by current theory, the explicit system empha-
sizes one-dimensional rules. If deferred reinforcement 
disables II but not RB category learning, II participants 
facing deferred reinforcement might turn—by informa-
tion-processing necessity—to one-dimensional rules 
instead. Thus, our third prediction was that participants 
in the II condition would supply their own RB task con-
strual because that was what they still could do—much 
as the macaque in the study by Smith et al. (2006) sup-
plied his own construal of a task with an associative 
structure that was made invisible.

The confirmation of these predictions would provide 
one of the clearest dissociations yet seen between RB 
and II category learning.

Method

This experiment included four between-participants  
conditions created by crossing two category structures to 
be learned (RB, II) with two reinforcement conditions 
(immediate, deferred).

Participants

University at Buffalo undergraduates with normal or cor-
rected-to-normal vision participated for course credit. 
Participants’ data were excluded if they completed fewer 
than 300 trials (1 and 4 participants excluded, respec-
tively, from the RB-immediate and II-immediate condi-
tions) or if they showed significantly lower performance 
during their last 100 trials than during their first 100 trials 
(1, 2, 3, and 2 participants excluded, respectively, from 
the RB-immediate, RB-deferred, II-immediate, and 
II-deferred conditions). The final sample included 84 par-
ticipants divided equally among the four conditions (i.e., 
21 participants in each condition).

Stimuli

The stimuli were unframed rectangles containing green 
lit pixels, presented on a black background in the center 
at the top of a 17-in. computer monitor (resolution of 800 
× 600 pixels). They were viewed from a distance of about 
24 in.

The stimulus rectangles varied in size and pixel den-
sity. Both dimensions had 101 levels (Levels 0–100). 
Rectangle width and height (in screen pixels) were calcu-
lated as 100 + level and 50 + level/2, respectively. Thus, 
rectangle size ranged from 100 × 50 (Level 0) to 200 × 
100 (Level 100). Pixel density—that is, the proportion of 
pixel positions that were illuminated—was calculated as 
0.05 × 1.018level. Thus, density varied from .0500 (Level 0) 
to .2977 (Level 100). Figure 2 shows the stimuli in the 
four corners of the stimulus space.

Category structures

Figure 1 shows the category structures used: a vertical RB 
structure with size (Dimension X) relevant and a major-
diagonal II structure with size and density (Dimension Y) 
relevant. The categories were defined by bivariate normal 
distributions along the stimulus dimensions, as specified 
in Table 1. Each exemplar was selected as a coordinate 
pair in the 101 × 101 space, and the abstract values were 
transformed into concrete size and density values. Each 
participant received his or her own sample of randomly 
selected category exemplars appropriate to the assigned 
task. To control for statistical outliers, we did not present 
exemplars whose Mahalanobis distance (e.g., Fukunaga, 
1972) from the category mean exceeded 3.0.

Procedure

Participants were assigned randomly to the RB or II task 
and the immediate- or deferred-reinforcement condition. 
Trials continued until the 55-min session ended or the 
participant completed 600 trials.
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Fig. 2.  Illustration of the 101 × 101 stimulus space.
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Below each to-be-categorized stimulus were the let-
ters “A” (on the left) and “B” (on the right), along with a 
central cursor. Participants depressed the “S” or “L” key 
on the computer keyboard to move the cursor across the 
screen until it reached the “A” or “B,” to indicate which 
category they thought the stimulus was a member of. The 
response keys corresponded spatially to the “A” and “B” 
response icons on the screen.

In the immediate-reinforcement condition, after a cor-
rect response, participants heard a whoop sound, earned 
a point, and saw their accumulated points (correct 
responses – incorrect responses). After an incorrect 
response, they heard a buzz sound, lost a point, received 
a 4-s time-out, and saw their accumulated points. The 
next trial followed.

In the deferred-reinforcement condition, participants 
completed each of six trials in a block without feedback. 
After each response, the program simply presented the 
next trial. At block’s end, participants received their posi-
tive outcomes grouped together (e.g., several whoops 
separated by 0.5 s for correct responses) and then their 
negative outcomes grouped together (e.g., several buzzes 
separated by 4 s for incorrect responses). Then they were 
updated on their accumulated points. The next trial block 
followed. (Fig. S1 in the Supplemental Material illustrates 
in more detail the progression of stimuli, responses, and 
reinforcements that characterized the immediate- and 
deferred-reinforcement conditions.)

Formal modeling

We used an RB model to specify the vertical or horizontal 
line through the stimulus space that would best partition 
a participant’s “A” and “B” responses. We used an II model 
to specify the slope and intercept of the nonhorizontal, 
nonvertical line through stimulus space that would best 
partition a participant’s “A” and “B” responses. The best-
fitting values for the parameters in the models were esti-
mated using maximum-likelihood methods. That is, we 
evaluated which model would have created with maxi-
mum likelihood the participant’s distribution of responses 
in the stimulus space (details in Maddox & Ashby, 1993). 

The Bayesian information criterion (BIC; Schwarz, 1978) 
determined the best-fitting model (BIC = r × lnN – 2lnL, 
with r = the number of free parameters, N = the sample 
size, and L = the model’s likelihood given the data).

Results

Accuracy-based analyses

The proportion of correct responses on the last 100 trials 
was examined in a two-way analysis of variance (ANOVA) 
with task (RB, II) and reinforcement condition (immedi-
ate, deferred) as between-participant factors. The crucial 
result was a significant interaction between task and con-
dition, F(1, 80) = 4.03, p = .0481, η

p
2 = .0479, reflecting 

that deferred reinforcement compromised II performance 
selectively.

Performance in the RB-immediate condition (M = .82 
correct) was statistically indistinguishable from perfor-
mance in the RB-deferred condition (M = .84 correct), 
t(40) = −0.33, p = .744, Cohen’s d = −0.10. There were 14 
and 15 strong learners (terminal performance ≥ .80) in 
these conditions, respectively. Thus, deferred reinforce-
ment had no cost for RB category learning.

Performance in the RB-immediate condition (M = .82 
correct) was also indistinguishable from performance in 
the II-immediate condition (M = .77 correct), t(40) = 
0.700, p = .488, Cohen’s d = 0.22. There were 14 and 11 
strong learners in these conditions, respectively.

In contrast, performance in the II-immediate condition 
(M = .77 correct) was distinguishable from performance 
in the II-deferred condition (M = .64 correct), t(40) = 3.76, 
p = .0005, Cohen’s d = 1.16. There were 11 and 0 strong 
learners in these conditions, respectively. Thus, deferred 
reinforcement had a high cost for II category learning. As 
we discuss shortly, the accuracy-based analyses sharply 
understated that cost.

Figure 3a shows a backward learning curve for the 
RB-deferred condition. To create this graph, we divided 
the trials into 20-trial blocks. From these blocks, we then 
excluded trials on which the X dimension (size) had a 
value greater than 40 or less than 60. In this way, we 

Table 1.  Distributional Characteristics for the Two Category Tasks

Task and category Mean of X Mean of Y Variance of X Variance of Y XY covariance

Rule-based task  
  Category A 35.86 50.00 16.33 355.55 0
  Category B 64.14 50.00 16.33 355.55 0
Information-integration task  
  Category A 40.00 60.00 185.94 185.94 169.61
  Category B 60.00 40.00 185.94 185.94 169.61
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accommodated variation in participants’ rule criterion 
near an X value of 50, the true category break point. 
Next, we counted how many of the remaining trials were 
responded to correctly, scoring as correct an “A” response 
if X was small (≤ 40) and a “B” response if X was large (≥ 
60). We then found the participants (n = 15) who met the 
criterion of reaching and sustaining .85 accuracy over five 
consecutive blocks of 20 trials. A relatively strict defini-
tion of arrival at criterion was adopted in this case 
because this analysis excluded the most difficult Category 
A and Category B trials. We aligned the trial blocks at 
which participants reached this criterion (Block 0) to 
depict the path by which they solved the RB task. As the 
figure shows, RB performance transformed at Block 0 
from near chance (.53 correct) to near ceiling (.98). 
Figure 3a is perfectly intuitive if—and probably only if—
one assumes the sudden discovery of a category rule. 
This figure essentially defines the RB category-learning 
process that the literature has debated.

Figure 3b shows a backward learning curve for the 
II-deferred condition, but with a twist: We assumed an 
RB standard of correct and incorrect performance based 
on Dimension Y (density). Specifically, in each 20-trial 
block, we excluded trials on which Y had a value greater 
than 40 or less than 60. For the remaining trials, we 
counted as correct an “A” response if Y was large (≥ 60) 
and a “B” response if Y was small (≤ 40). We then found 
all the participants (n = 14) who met the learning crite-
rion (.85 accuracy over five consecutive 20-trial blocks) 
in this rule-focused way and aligned the trial blocks at 
which they reached this criterion (Block 0) to depict the 
path by which they chose an RB strategy in their II task. 
These participants also jumped to rule use suddenly. This 
is a remarkable result because they were not reinforced 

for RB learning; they were given an II task with an II 
reinforcement contingency. Clearly, the reinforcement 
contingency was not controlling learning. Participants 
self-chose their RB strategy cognitively, facing the exi-
gency of deferred reinforcement.

We repeated this analysis for participants in the 
II-immediate condition (Fig. 3c). There was strong learn-
ing prior to Block 0 and only a small jump in perfor-
mance at criterion. Performance fell back down after the 
criterion blocks to a level continuous with that before 
criterion. Thus, the arrival at criterion was an artificial, 
statistical occurrence. The RB strategy was not evident in 
the II-immediate condition (Fig. 3c), but it emerged 
strongly in the II-deferred condition (Fig. 3b).

Model-based analyses

We modeled participants’ last 100 trials to determine 
whether they adopted appropriate decision strategies 
and whether deferred reinforcement disrupted those 
strategies or altered them in a theoretically meaningful 
way. Figure 4a shows the modeling results for 15 
RB-immediate participants. (The poor performance of 
the 6 other participants in this condition was not consis-
tent with RB or II strategies; models for their performance 
indicated that they had a guessing strategy and no defi-
nite decision bound that could be drawn). The 15 deci-
sion bounds were primarily organized along the midline 
of the stimulus space’s X dimension. Many participants 
found the RB task’s adaptive solution—a one-dimen-
sional size rule.

Figure 4b shows the modeling results for 17 RB-deferred 
participants (modeling indicated that 4 participants in 
this condition were guessers). The similarity to Figure 4a 
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Fig. 3.  Backward learning curves: proportion correct as a function of trial block (Block 0 = the block at which the learning criterion was met). The 
graph in (a) shows the path to rule-based (RB) learning among strong learners in the RB-deferred condition. Analogous graphs were created for 
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to which an RB strategy was used among strong learners who received (b) deferred reinforcement and (c) immediate reinforcement. (See the text 
for details on how these curves were created.)
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is clear-cut. Many of these participants also found the 
one-dimensional size rule. The model-based and accu-
racy-based analyses converged to show that RB learning 
survived deferred reinforcement perfectly intact.

Figure 4c shows the modeling results for 19 
II-immediate participants (modeling indicated that 2 par-
ticipants in this condition were guessers). These decision 
bounds were generally organized along the stimulus 
space’s major diagonal. Many participants found a way to 
integrate the informational signals provided by the two 
stimulus dimensions toward making appropriate cate-
gory decisions.

Figure 4d shows the modeling results for 18 II-deferred 
participants (modeling indicated that 3 participants in 
this condition were guessers). The dissimilarity from 

Figure 4c is striking. II category learning failed disas-
trously in the face of deferred reinforcement. There were 
no decision bounds tracing the stimulus space’s major 
diagonal. There was no appropriate information integra-
tion. Instead, participants defaulted to an RB strategy 
with decision bounds near the midline of Dimension Y. 
Possibly they defaulted to the only categorization process 
available under deferred reinforcement. They had to hold 
in mind a description of what they did over the whole 
trial block, so that the summary feedback—when it finally 
came—would be informative. As suggested by multiple-
systems theory, this description took the form of a  
one-dimensional rule, not a principle for integrating 
information across dimensions. Figure 3b confirms these 
participants’ process and point of rule discovery.
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This result strengthens our interpretation of the accu-
racy-based analyses. The .64 accuracy achieved by 
II-deferred participants definitely does not signify 64% 
successful II learning. It signifies a heavy reliance on 
rules—that is, a reliance on the qualitatively wrong infor-
mation-processing strategy for the II task. There was not 
64% II learning in this condition. There was 0% II learn-
ing under deferred reinforcement.

General Discussion

Summary

The controversy over multiple category-learning utilities 
is reminiscent of the debate over multiple memory sys-
tems. Categorization researchers continue to seek more 
sharply distinguishing paradigms. We have contributed a 
new dissociative paradigm here by incorporating the 
technique of deferred reinforcement from comparative 
psychology.

We hypothesized that deferred reinforcement should 
disable associative learning and the II category learning 
that depends on it. Indeed, deferred reinforcement elimi-
nated II category learning. There may be no comparably 
strong demonstration in the literature.

We also hypothesized that RB learners hold their cat-
egory rule in working memory, still allowing its evalua-
tion for adequacy at the end of the trial block when 
deferred reinforcement finally arrives. This hypothesis 
was also confirmed. RB learning was unscathed by 
deferred reinforcement. The demonstration that II learn-
ing is fully dependent on trial-by-trial reinforcement, but 
RB learning is fully independent, supports the multiple-
systems view by confirming the operation of qualitatively 
different category-learning processes in different tasks.

Finally, we hypothesized that—with II category learn-
ing disabled by deferred reinforcement—participants 
might fall back, by necessity, to RB strategies. They would 
need to maintain in working memory a description  
of their blockwide strategy so they could interpret the 
summary feedback when it arrived. According to multi-
ple-systems theory, this working description would be  
a one-dimensional rule and not an II principle. In fact, 
confirming multiple-systems theory in another way, 
II-deferred participants clearly adopted one-dimensional 
category rules that did not suit their task’s II structure.

Dissociative frameworks in 
categorization

The confirmation of these three hypotheses constitutes 
one of the strongest RB-II dissociations yet seen. One 
cannot attribute this dissociation to differential difficulty. 
We have discussed how RB and II tasks are matched for 

every aspect of objective difficulty. Our tasks were 
learned equivalently under immediate reinforcement, 
which confirms that matching. And the result was not just 
that II learning worked more haltingly or with greater dif-
ficulty under deferred reinforcement. Instead, it did not 
engage at all—qualitatively—and the difficulty hypothe-
sis cannot explain its complete absence. In addition, RB 
strategies showed a distinctive learning trajectory (Fig. 
3a) that II strategies do not show. The difficulty hypoth-
esis cannot explain that difference either.

The difficulty hypothesis also raises more general con-
cerns. If one defines difficulty by any objective standard, 
our tasks were matched for difficulty. If one defines dif-
ficulty by humans’ speed of learning and then uses diffi-
culty to explain humans’ speed of learning, the reasoning 
is circular. If one explains humans’ speed of RB learning 
by an additional process or system that makes RB learn-
ing “easier” than II learning, one endorses multiple sys-
tems or processes. In the same way, one would not say 
that procedural learning—as compared with declarative 
memory—is preserved in amnesia because it is easier. 
There are more precise and theoretically illuminating 
things to say.

Nor can one claim that deferred reinforcement simply 
weakened the reinforcement signal by making it spo-
radic. In that case, if RB and II learning depended on that 
signal equivalently, they would have been impaired 
equivalently. They were not. The demonstration that one 
learning process is reliant on trial-by-trial reinforcement, 
and the other is not, supports the multiple-systems view. 
Moreover, no possible explanation based on the strength 
of the reinforcement signal can explain why II-deferred 
participants qualitatively shifted to RB processing. That 
shift is definitely not what the reinforcement signal was 
communicating, no matter its strength.

Another feature of the data disconfirms a single-sys-
tem, exemplar-based explanation. The ability of exem-
plar models to capture learning trajectories in RB and II 
tasks has been debated (e.g., Ashby & Ell, 2002; Nosofsky 
& Kruschke, 2002). Exemplar models fit learning curves 
through gradual parameter changes. But the change 
shown in Figure 3a is qualitatively sudden, not gradual. 
Single-system models cannot fit this qualitative shift, or 
explain why there was no learning (i.e., no parameter 
changes) until Block 0, or why learning suddenly 
exploded at Block 0 (large parameter changes in one 
block). In contrast, all aspects of Figure 3a flow from 
assuming the sudden discovery of a category rule.

Our results do support the multiple-systems frame-
work of categorization. Indeed, they instantiate perfectly 
the current theory of II learning. II category learning is 
presumably organized around a series of time-critical 
events that may surround the reinforcement-mediated 
strengthening of dopamine-related synapses (Ashby, 
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Ennis, & Spiering, 2007). II learning cannot survive 
deferred reinforcement because the time-critical arrival of 
reinforcement is disrupted.

Our results also instantiate perfectly the current theory 
of RB learning. RB learning is presumably organized 
around rules actively held in working memory. RB learn-
ing survives deferred reinforcement because it does not 
depend on any temporal sequence of shaping or condi-
tioning events. RB category knowledge is timeless in a 
sense because it is constantly available to consciousness. 
It can be flexibly applied and flexibly updated after a 
block of trials as well as after a single trial.

The present findings strengthen the functional MRI 
evidence, the neuropsychological evidence from patients, 
and results from other RB-II dissociative paradigms. 
Possibly the present data will bring the debate about RB, 
II, and multiple category-learning systems nearer to a 
consensual and collegial conclusion that would further 
the categorization literature’s theoretical development.

Adaptive complementarity in 
categorization

The multiple-systems framework in categorization points 
to an elegant division of cognitive labor that is insuffi-
ciently appreciated. Through II learning, cognition cre-
ates stimulus-response bonds in a sense. Consequences 
(reinforcements) are the glue for associating adaptive 
behaviors to stimuli. This system has considerable 
strengths. It produces stable behavior. It produces the 
behavior with the highest probability of reinforcement.  
It slowly, conservatively commits to behavioral solutions. 
It slowly, conservatively lets behavioral solutions go 
(through the class of extinction phenomena). It operates 
preattentionally, out of awareness, which potentially 
grants it great phylogenetic breadth.

But this system has constraints. It depends on immedi-
ate reinforcement, time-critical event sequences, and per-
sistent event repetition. Learning cannot occur off-line or 
with displacement in time or space from the task’s trials. 
New approaches cannot be chosen instantly at need. Old 
approaches cannot be replaced instantly at need.

RB learning is a perfect complement to II learning. It 
is not rigidly time locked. It does not depend on immedi-
ate reinforcement or event repetition. Learning can occur 
off-line and with displacement. Learning and unlearning 
can occur suddenly at need.

The phylogenetic depth of adaptive 
complementarity

The adaptiveness of these complementary categorization 
utilities raises a question concerning their phylogenetic 

depth that recent research has addressed. Smith, Beran, 
Crossley, Boomer, and Ashby (2010) found that rhesus 
macaques (Macaca mulatta), like humans, sometimes 
learn RB tasks much faster than II tasks. Thus, nonhuman 
primates have some structural components of humans’ 
capacity for explicit categorization and glean some of the 
benefits of the RB category-learning system, though they 
may not have all the components of humans’ explicit 
system (e.g., full declarative awareness). Smith et al. 
(2012) generalized this finding to another large primate 
group, the New World monkeys.

In contrast, Smith et al. (2011) found that pigeons 
learned RB and II tasks to the same level at the same 
speed. In pigeons, the cognitive system may not be 
strongly committed to dimensional analysis and category 
rules. Pigeons may lack the explicit-implicit complemen-
tarity in categorization that primates possess. Pigeons’ 
performance could shed light on the ancestral vertebrate 
categorization system from which the categorization sys-
tem of primates and humans emerged.

Conclusion

The dissociative framework describing explicit and 
implicit systems of categorization continues to illuminate 
and enrich the cognitive and comparative literatures on 
categorization. It guides productive empirical research, 
generates testable predictions, and expresses important 
adaptive complementarities among the categorization 
utilities possessed by humans and some nonhuman 
species.
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