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Abstract Object constancy, the ability to recognize
objects despite changes in orientation, has not been well

studied in the auditory modality. Dolphins use echolocation

for object recognition, and objects ensonified by dolphins
produce echoes that can vary significantly as a function of

orientation. In this experiment, human listeners had to

classify echoes from objects varying in material, shape, and
size that were ensonified with dolphin signals. Participants

were trained to discriminate among the objects using an

18-echo stimulus from a 10" range of aspect angles, then
tested with novel aspect angles across a 60" range. Par-

ticipants were typically successful recognizing the objects

at all angles (M = 78 %). Artificial neural networks were
trained and tested with the same stimuli with the purpose of

identifying acoustic cues that enable object recognition. A

multilayer perceptron performed similarly to the humans
and revealed that recognition was enabled by both the

amplitude and frequency of echoes, as well as the temporal

dynamics of these features over the course of echo trains.
These results provide insight into representational pro-

cesses underlying echoic recognition in dolphins and sug-
gest that object constancy perceived through the auditory

modality is likely to parallel what has been found in the

visual domain in studies with both humans and animals.

Keywords Object constancy ! Bottlenose dolphin !
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Introduction

Every day, organisms quickly and accurately recognize

familiar objects despite changes in object orientation, size,
or distance. This ability to recognize an object from any

viewpoint is called object constancy, and it is one of the

fundamental and essential properties of visual perception
(for a review see Jolicoeur and Humphrey 1998; Graf

2006). Although humans typically recognize objects visu-

ally without apparent effort, no artificial computational
system is yet able to successfully recognize objects over a

wide range of orientations and contexts (Graf 2006). The

inability of computational vision researchers to match
natural object recognition abilities suggests that the rep-

resentational and transformational processes underlying

object constancy remain unclear (DiCarlo and Cox 2007).
Past research on visual object constancy has focused on

recognition of objects that vary in shape. These studies
have led to competing theories of how people represent

objects. One theory is that recognition performance is

view-invariant, and a single underlying representation is
constructed of the object (e.g., Biederman and Gerhardstein

1993; Marr 1982). In this view, object constancy is

achieved because the same object representation is acti-
vated for any orientation of the object. Another theory is

that recognition performance is view-dependent, and dif-

ferent object representations are formed with each different
view (e.g., Tarr and Pinker 1989). In this framework, object

constancy is achieved by a transformation process that

involves multiple stored representations. Object features
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and experimental conditions can cause performance to shift

from view-dependent to view-invariant, or vice versa.
Although many studies have addressed the ability of

humans and other animals to visually recognize objects

from different orientations (Biederman and Bar 1999;
Kirkpatrick 2001; Logothetis et al. 1994, 1995; Shepard

and Metzler 1972; Zoccolan et al. 2009), very few have

investigated object constancy in humans and other ani-
mals in other modalities (DeLong et al. 2008). The current

study examined whether auditory representations of echoes
coming from objects show object constancy effects com-

parable to those seen in visual object recognition.

Studies of object constancy can benefit from examining
multiple species that solve the same object recognition

problem, but in different ways. For example, whereas

humans rely heavily on vision to identify objects, dolphins
often use echolocation (i.e., biological sonar). Dolphins

echolocate by emitting a series of ultrasonic clicks and

listening to the returning echoes (Au 1993). Dolphins use
echolocation to navigate, avoid predators, and track mov-

ing prey. Most of the objects dolphins encounter are aspect-

dependent, meaning that the size and shape of the surfaces
of the object will change as they are viewed from different

orientations. The echoes from these types of objects can

vary considerably depending on the angle from which they
are inspected by the dolphin (Helweg et al. 1996a, b). In

fact, echoes from different orientations of a single object

can vary more from each other than do echoes from dif-
ferent objects (DeLong et al. 2006). Thus, the problem

echolocating dolphins face in recognizing objects is very

similar to the one humans face visually—the object must
be correctly identified despite large changes in the specific

sensory information (the visual image or the auditory

event) that result from changes in the orientation and
location of the object.

Human listening studies can inform our understanding of

how both humans and dolphins extract information about
object identity from echoes (Au and Martin 1989; DeLong

et al. 2007a, b; Gorman and Sawatari 1985; Gorman and

Sejnowski 1988; Helweg et al. 1995). This general approach
involves recording echoes from objects using a dolphin’s

echolocation signal, slowing down the echoes in time to

lower the frequency into the human hearing range, and then
presenting those echoes to human participants in an object

discrimination task. In the task presented to humans, the

echo stimulus is played via headphones, after which the
participant must choose the correct object from among

multiple objects. Human participants have the advantage

that they can verbally report auditory features of the echoes
they used to discriminate objects. Whether salient auditory

features reported by humans overlap with those used by

dolphins can be assessed, in part, by comparing the errors
made by humans and dolphins on the object discrimination

task. Matching error patterns would suggest use of similar

auditory features, whereas mismatching error patterns
would imply the use of different features.

This general approach is a reasonable way to investigate

auditory processing in both species because auditory per-
ception in humans and dolphins appears to be similar in

certain ways. For example, both humans and dolphins can

discriminate between sounds that differ in intensity by
1 dB (Green 1993; Au 1993), and the frequency discrimi-

nation abilities of humans and dolphins for tonal stimuli are
comparable in the range of best hearing for each species

(Herman and Arbeit 1972; Thompson and Herman 1975;

Weir et al. 1976).
Several prior studies have shown the usefulness of

comparing human and dolphin performance on object

discrimination tasks. In one study, human listeners were
presented with echoes from different angles of aspect-

dependent objects that had been used in a dolphin dis-

crimination task (DeLong et al. 2007a). Aspect-dependent
objects appear different based on their orientation, and

echoes from different angles differ substantially. The

objects varied in size, shape, material, and/or texture. In
two experiments, the human listeners performed as well or

better than the dolphin at discriminating objects and

reported the salient acoustic cues. The error patterns
(object confusions) of the humans and the dolphin were

compared to determine which acoustic features reported by

the humans were likely to have been used by the dolphin.
The results indicated that the dolphin did not appear to use

overall echo amplitude but that it attended to the pattern of

changes in the echoes across different object orientations.
Having information in multiple echoes gleaned from mul-

tiple object orientations appeared to be particularly

advantageous when discriminating among objects that
varied in shape. These results were consistent with another

study in which the human listeners had to identify three

aspect-dependent objects (rectangle, pyramid, and cube)
that had been used in a dolphin discrimination task (Hel-

weg et al. 1995). The human listeners used the pattern of

changes in amplitude across successive echoes to identify
the differently shaped objects.

In another study, researchers ensonified aspect-inde-

pendent objects with dolphin-like signals and then recorded
the echoes produced by each object (DeLong et al. 2007b).

The objects, which had been used in discrimination studies

with dolphins, varied in specific ways: hollow aluminum
cylinders varied only in wall thickness (a standard had a

6.35 mm wall thickness and eight others varied by ±0.2,

±0.3, ±0.4, ±0.8 mm) and solid 7.62-cm-diameter spheres
varied only in material (a standard was stainless steel, and

the four others were aluminum, brass, glass, and nylon).

Like the dolphins, the human subjects discriminated
between echoes from the standard objects and the
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comparisons within each set, but the humans also identified

which comparison object produced the echoes. The human
and dolphin subjects performed similarly in most object

discriminations. The humans reported using pitch (poten-

tially time separation pitch) and duration to identify the
cylinders and using pitch and timbre to identify the

spheres.

There are differences between humans and dolphins that
could result in differences in the perception of echo stimuli

(e.g., sharp frequency tuning and short auditory integration
time in dolphins; Supin and Popov 1995), and transforming

the echoes to fall within the human hearing range will

produce changes in the timing and spectra of the echoes.
Thus, human listening studies have to be supplemented

with other approaches, such as computational modeling

and direct investigation of specific auditory features that
could be used by dolphins. Although humans probably do

not apprehend objects echoically in the same way that

dolphins do, they can perform as well or better than dol-
phins on object recognition tasks using echo stimuli (De-

Long et al. 2007a, b), once those echoes have been

transformed to fall within the range of human hearing.
Furthermore, the objects that humans tend to confuse when

classifying echoes are often the same objects that dolphins

performing echolocation tasks confuse, indicating that at
times humans and dolphins may use the same echoic fea-

tures (DeLong et al. 2007a). These findings suggest that

despite differences in how humans and dolphins may per-
ceive the echoes and represent the sounds, there may be

underlying similarities in how both acquire and generalize

auditory information relevant to recognizing objects.
Computational models of object recognition provide a

second useful tool for exploring the representational pro-

cesses underlying object constancy. For example, early
attempts to classify sonar targets with artificial neural

networks revealed that relatively simple networks with

multiple layers of processing discovered features within
sonar returns that were similar to the features that human

listeners learned to use (Gorman and Sejnowski 1988).

Studies of neural networks trained to recognize objects
using either single echoes or multiple successive echoes

generated from a dolphin’s sonar signal showed that net-

works that integrate information from successive echoes
are better able to mimic the recognition performance of

dolphins (Moore et al. 1991) and that such networks can

recognize objects at above chance levels even when the
echoes were generated by objects that varied freely in

orientation (Helweg et al. 1996a, b). As with human lis-

tening studies, neural networks almost certainly do not
replicate the perceptual processes employed by echolo-

cating dolphins. Nevertheless, the ability of such compu-

tational models to recognize objects at levels comparable to
dolphins and humans indicates that they may be extracting

similar information. Major advantages of neural networks

are that they can be used to rapidly test various hypotheses
about which features of objects are critical for object rec-

ognition and generalization and can be used to explore how

different networks transform stimulus features in ways that
facilitate recognition of novel exemplars (Guillette et al.

2010; Wisniewski et al. 2012) as well as recognition of

familiar exemplars presented in novel orientations (Gor-
man and Sejnowski 1988).

Examining object constancy in modalities other than
vision may yield a deeper understanding of the cognitive

processes that support this fundamental property of per-

ception. The purpose of the current study was to explore
how changes in viewpoint affect participants’ ability to

identify an object using auditory instead of visual stimuli.

Only two studies to date have assessed how well a dolphin
can identify objects rotated away from familiar orienta-

tions. In Nachtigall et al.’s (1980) study, a dolphin learned

to discriminate between an upright foam cylinder and a
foam cube with its flat face forward with high accuracy. In

the test phase, there were probe trials in which the cube and

cylinder were presented in different orientations (e.g., cube
edge forward and cylinder top face forward). The dolphin

showed poor performance when both objects were pre-

sented flat face forward (M = 57 %). This suggests a lack
of object constancy on this shape discrimination task when

training consisted of limited views of the objects.

In Au and Turl’s (1991) study, a dolphin learned to
discriminate among cylinders made of different materials

(e.g., aluminum and coral rock) at three orientations (0",
45", and 90"). When later tested at novel orientations (15",
30", 60", and 75"), the dolphin continued to discriminate

among the stimuli with high choice accuracy (96–100 %).

The high choice accuracy on novel orientations probably
reflects the fact that they were similar to the object orien-

tations used during training (within 15") and that the object

discrimination involved a material discrimination instead
of a shape discrimination.

The current study expands upon Nachtigall et al.’s

(1980) study and Au and Turl’s (1991) study by presenting
echoes from objects that vary in shape and material, as well

as presenting novel aspect angles that are more than 15"
away from the aspect angles used during training and by
examining whether human participants were able to identify

sequences of echoes as corresponding to particular objects

when the object orientations differed from those that they
were originally trained to recognize. Neural networks were

also trained to classify these same objects using the spectral

and temporal features of the echo sequences learned by
participants and tested on their ability to accurately classify

representations of novel echo sequences corresponding to

different aspects. Neural network performance was then
compared to human performance.
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Human listening experiment

Methods

Participants

Twenty-six participants (14 females and 12 males) volun-

teered to be tested. Participants ranged in age from 19 to
49 years (M = 22.6 years). All participants were students

or staff at Rochester Institute of Technology. All partici-

pants were tested for normal hearing with the Home
Audiometer 2.0 hearing test that spanned 125–8 kHz (Es-

ser Audio 2009), and all had normal sensitivity in the

frequency range of the echo stimuli. Participants received
either extra credit for a psychology course or were paid

$10.

Stimuli

The stimuli used in this experiment were pre-recorded
echoes from three objects: a ceramic cross, a copper fig. 8,

and a wood rectangle (see Fig. 1). These objects were

used in a previous echolocation study with a bottlenose
dolphin (DeLong et al. 2006). Echoes from the three

objects were recorded using a typical bottlenose dolphin

click recorded from a male dolphin that has been used in
numerous studies (70 ls long with a peak frequency of

about 120 and a 60-kHz bandwidth; see Au 1993). Echo

recordings were made from multiple orientations of each

object in which one echo was captured for each aspect
(1.3" apart) between -30" and ?30", where 0" is the front
face of the object. Nine echo train measurements were

collected for each object. A detailed description of the
echo recording apparati and procedure can be found in

DeLong et al. (2006).

The stimuli were slowed down to shift the spectra of the
echoes into the human hearing range using Avisoft-SAS

Lab Pro version 5.0.11 (Avisoft Acoustics, 2010). The

original echoes were digitized at 1 MHz and had center
frequencies around 125 kHz. The echoes were all time

stretched by a factor of 50 by converting the echoes from

digital to analog at 20 kHz. The time-stretched echoes had
center frequencies around 2.5 kHz. Other studies in which

dolphin echoes were presented to human listeners used the

same factor of 50 (Au and Martin 1989; Helweg et al.
1995).

Each echo recording was an echo train consisting of 45

echoes ranging from -30" to ?30". The echo trains were
divided into five aspects. Aspect 1 contained echoes from

approximately -19" to -30", aspect 2 contained echoes

from approximately-7" to-18", aspect 3 contained echoes
from approximately -6" to ?6" (including 0", the front of

the object), aspect 4 contained echoes from approximately
?7" to ?18", and aspect 5 contained echoes from approx-

imately ?19" to ?30". Each aspect contained nine echoes,

but dolphins rarely use so few echoes to discriminate among

Fig. 1 The three objects and the stimulus echo trains for each of the five aspects, including the training aspect (3) and the four transfer aspects (1,
2, 4, and 5)

Anim Cogn

123

Author's personal copy



objects in a laboratory setting (Au 1993). For example, one

dolphin typically used 20–40 echoes to detect a target (Au
and Turl 1983). To increase the ecological validity of the

task, the echo stimuli were formatted to mimic a dolphin

getting multiple ‘‘looks’’ at each object so that there was a
total of 18 echoes in each sequence of echoes. The first nine

echoes correspond to a short left-to-right sweep of the

dolphin’s head, and the last nine echoes correspond to a
short right-to-left sweep of the dolphin’s head. Echoes were

presented consecutively in each stimulus echo train with no
delays introduced between echoes (although individual

echoes were audible in the stimuli). The total duration of

each stimulus echo train was approximately 1 s. Since there
were nine echo recordings for each object, nine exemplars

of stimulus echo trains were produced for each of the five

object aspects (three objects 9 nine exemplars 9 five
aspects = 135 total echo train stimuli).

Procedure

The participants were tested with an iMac desktop com-

puter (Apple Inc. 2009) that channeled the echo stimuli via
two Bose on-ear headphones (Bose Corp. 2009) to the

participant and experimenter (the headphones were not

noise canceling). Participants sat with their back to the
experimenter and were not able to see the computer screen

or the experimenter. The echo stimuli were played using

Quicktime version 7.6.6 (Apple Inc. 2010).
Participants were tested individually by a single exper-

imenter in a quiet room. After participants passed the

hearing test, they heard a set of instructions and were given
a sound vocabulary sheet with terms to describe the echo

stimuli. The participants were instructed to use these terms

and their definitions and were allowed to reference the
sound vocabulary sheet throughout testing. Five terms and

their operational definitions were given: ‘‘loudness’’ (how

loud or quiet the sound is, related to the sound’s amplitude
or intensity), ‘‘pitch’’ (how high or low the sound is, related

to the sound’s frequency). ‘‘Length’’ (how long each echo

is in duration), ‘‘timbre/sound quality’’ (the property in
musical tones that makes it possible to distinguish one

instrument from another when the pitch and loudness of

the tones are the same), and ‘‘pattern of change in echoes
across the echo train’’ (the change in the echoes within the

echo train may form a different pattern for different

objects). This ensured that all participants had the same set
of descriptive tools to describe differences between echo

stimuli in the interviews that followed each training and

test session. Participants were told they could also use other
terms that were not listed on the vocabulary sheet.

Participants were then played three pure tone sounds

with the same pitch and timbre demonstrating a loudness
difference (the tones rose in volume), two pure tone sounds

demonstrating a difference in pitch (880 vs. 220 Hz tone

played at the same volume by a piano), three tones dem-
onstrating a differences in timbre (middle C played by a

French horn, trumpet, and soprano sax at the same volume).

Participants viewed photographs of the ceramic cross
(6.3 cm 9 8.1 cm), copper fig. 8 (7 cm x 8.2 cm), and

wood rectangle (6.7 cm x 8.2 cm) throughout the study. All

participants listened to the echo stimuli at the same overall
volume, with the exception of one participant who preferred

to listen to all the echoes at two-thirds volume (for all
participants, the original amplitude relations between ech-

oes in an echo train and between objects were retained).

First, participants received three training sessions. In
each training trial, the experimenter played a stimulus echo

train, the participant gave a verbal response (the name of

the object), and the experimenter provided feedback (cor-
rect/incorrect). If the participant was correct, she/he would

move onto the next trial. If the participant was incorrect,

she/he was allowed to give a second answer and would
again receive feedback (correct, on incorrect and the cor-

rect choice). In each trial, the participant was allowed to

listen to the stimulus echo train as many times as they liked
before they made their first answer (but they could not hear

it again before their second answer). Participants usually

requested to hear each stimulus echo train once or twice.
The average number of times in a trial the participant

requested to hear each stimulus across three training ses-

sions is as follows: copper fig 8. = 1.03, wood rectan-
gle = 1.03, and cross = 1.07.

Only aspect 3 for each object was used in the three

training sessions. Each training session consisted of four
blocks, with nine trials per block (three trials for each of

the three objects) for a total of 36 trials per session.

Stimulus echo train exemplars 1, 2, and 3 were used in the
first two training sessions. The first 18 trials of training

session three contained stimulus echo train exemplars 4, 5,

and 6 and the last 18 trials contained exemplars 7, 8, and 9.
The trial order within each training block was randomized

separately for each participant. There was no pause

between the trials.
Participants completed two test sessions after the train-

ing was complete. Each test session consisted of 36 trials

(four blocks with nine trials per block). Each block con-
tained the training aspect (aspect 3) and two transfer

aspects: a near aspect (2 or 4) and a far aspect (1 or 5) for

each of the three objects (only exemplar 1 was used in the
test sessions). Test session 1 contained the following

transfer aspects: cross aspects 1 and 2, copper aspects 4 and

5, and wood aspects 1 and 4. Test session 2 contained the
following transfer aspects: cross aspects 4 and 5, copper

aspects 1 and 2, and wood aspects 2 and 5. Half of the

participants were randomly assigned to receive test session
1 first, and the other half received test session 2 first. The
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trial order within each test block was randomized sepa-
rately for each participant. Participants were provided with

feedback in each trial and allowed to select a second

answer in the same manner as in the training sessions.
Participants could listen to the echo train stimulus more

than once before the first answer. The average number of

times in a trial the participant requested to hear each
stimulus across two test sessions was as follows: cop-

per = 1.02, wood = 1.04, and cross = 1.05.

Participants completed an interview immediately after each
training and testing session. Participants were asked to

describe how the auditory features of the echo stimuli (e.g.,
loudness, pitch, and timbre) differed between the threeobjects,

to report the feature that was most important to them when

discriminating among the objects, and to describe whether
their performance changed as the session progressed. After

participants completed the entire experiment, participants

were asked to specify auditory features for each object that
helped them identify objects throughout the study. A SONY

IC-Recorder ICD-PX720 (2009) was used to record inter-

views. Each training or test session followed by the interview

took approximately 10–15 min. All participants completed
the entire experiment in approximately 60–80 min.

Results

Training sessions

Figure 2a shows the discrimination performance in the

training sessions. Chance choice accuracy is 33 %, because
the participants could choose from among three alterna-

tives. To determine whether the participants’ performance

was above chance in the training session, a t test was
performed separately for each of the three objects in each

of the 12 blocks using one score for each participant

(average performance on the block) and comparing the
participants’ scores to a value of 0.33. Since there were 36

t tests performed, a Bonferroni adjustment was made and

the alpha level was set at p = 0.001. The participants’
performance was significantly above chance for all objects

in all blocks except for the ceramic cross in blocks 1, 2, and

3 (see Table 1). Performance accuracy was 80 % or higher
on the last three training blocks for all objects.

Test sessions

The participants successfully transferred their discrimina-

tion to the four novel object aspects. Figure 3a shows the
discrimination performance in the test sessions for the

aspect participants were trained on (3) and the four transfer

aspects (1, 2, 4, and 5). To determine whether the

Fig. 2 Discrimination performance in the training sessions for
humans (a) and artificial neural networks (b). Training session 1
included blocks 1–4, training session 2 included blocks 5–8, and
training session 3 included blocks 9–12 (all training trials included
only aspect 3). Error bars show standard error. The dotted line shows
chance performance (33 %). For the human listeners in (a), perfor-
mance was significantly above chance (p\ 0.001) for all three
objects in all blocks with the exception of the ceramic cross in blocks
1, 2, and 3

Table 1 T tests for the training sessions with human participants

Block Object

Copper fig. 8 Ceramic cross Wood rectangle

1 4.11 0.94 4.11

2 5.25 3.39 7.46

3 5.49 3.00 4.70

4 7.33 4.17 10.63

5 10.03 8.18 14.00

6 8.34 6.56 11.88

7 10.11 6.31 17.49

8 12.58 7.65 15.81

9 16.06 7.75 15.81

10 21.11 11.35 17.63

11 10.63 15.51 11.51

12 17.64 10.63 15.11

Each cell shows the t value for a t test that was performed separately
for each object in each block using one score for each participant
(average performance on the block) and comparing the participants’
scores to a value of 0.33. The degrees of freedom equal 25 for each
t test and p\ 0.001 for each cell except for the ceramic cross in
blocks 1, 2, and 3
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participants’ performance was above chance in the test

session, a t test was performed separately for each of the
three objects in each of the five aspects using one score for

each participant (average performance on the block) and
comparing the participants’ scores to a value of 0.33. Since

there were 15 t tests performed, a Bonferroni adjustment

was made and the alpha level was set at p = 0.01. The
participants’ performance was significantly above chance

for all objects in all five aspects (see Fig. 3 for t values).

A 2 (order: order 1 is test session 1 first, order 2 is test
session 2 first) 9 2 (test session) 9 3 (object: ceramic

cross, copper fig. 8, and wood rectangle) 9 3 (aspect:

training aspect, transfer near aspect, and transfer far aspect)
analysis of variance (ANOVA) with the last three factors as

repeated measures was conducted on the proportion of

correct answers made by the participants. There was a
significant effect of object, F(2, 48) = 9.42, p\ 0.001, a

significant effect of aspect, F(2, 48) = 7.99, p\ 0.01, and

an interaction between object and aspect, F(4, 96) = 5.73,
p\ 0.001. Post hoc analyses revealed that performance for

the copper fig. 8 on the transfer far aspect (70 %) was

significantly worse than on the transfer near aspect (91 %)
and the training aspect (91 %). Choice accuracy did not

differ significantly between the training aspect, transfer

near aspect, and transfer far aspect for the ceramic cross
(61, 72, and 71) and the wood rectangle (83, 82, and 72 %;

Newman–Keuls tests, p\ 0.05).

There was also a significant effect of test session, F(1,
24) = 6.34, p\ 0.05, and a three-way interaction between

test session, object, and aspect, F(4, 96) = 2.72, p\ 0.05.

Post hoc analyses show that performance for the copper
fig. 8 on transfer aspect 5 (62 %) was significantly worse

than on training aspect 3 (94 %) and transfer aspect 4

(96 %) in session 1. In session 2, there was no significant
difference in performance for the copper fig. 8 on training

aspect 3 (87 %), transfer aspect 1 (77 %), and transfer

aspect 2 (86 %). Choice accuracy did not differ signifi-
cantly between the training aspect, transfer near aspect, and

transfer far aspect for the ceramic cross and the wood

rectangle in test session 1 or test session 2 (Newman–Keuls
tests, p\ 0.05).

Fig. 3 Discrimination performance in the test sessions for humans
(a) and artificial neural networks (b). Aspect 3 was the training
aspect, and aspects 1, 2, 4, and 5 were the transfer aspects. Error bars
show standard error. The dotted line shows chance performance
(33 %). For the human listeners in (a), performance was significantly
above chance (p\ 0.001) for all three objects in all five aspects
[Cross—Aspect 1, t(25) = 6.04; Cross—Aspect 2, t(25) = 6.50;
Cross—Aspect 3, t(25) = 5.82; Cross—Aspect 4 t(25) = 8.34;
Cross—Aspect 5, t(25) = 7.57; Copper—Aspect 1, t(25) = 8.49;
Copper—Aspect 2, t(25) = 12.52; Copper—Aspect 3, t(25) = 24.28;
Copper—Aspect 4, t(25) = 27.75; Copper—Aspect 5, t(25) = 4.51;
Wood—Aspect 1, t(25) = 5.95; Wood—Aspect 2, t(25) = 12.21;
Wood—Aspect 3, t(25) = 16.34; Wood—Aspect 4, t(25) = 9.01;
Wood—Aspect 5, t(25) = 9.61]
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Fig. 4 The proportion of errors in each error type shown for all
sessions of the human listening experiment. Participants could make
three types of errors: confusing the copper figure 8 and wood
rectangle, confusing the wood rectangle and ceramic cross, or
confusing the copper figure 8 and the ceramic cross. The predominant
error type in the test sessions was a wood rectangle–ceramic cross
error

Anim Cogn

123

Author's personal copy



Errors

Figure 4 shows the types of errors participants made in
each session. Errors were divided into three types by

pairing the objects: copper figure 8-wood rectangle con-

fusions, wood rectangle-ceramic cross confusions, and
copper figure 8-ceramic cross confusions. For example,

when participants heard echo stimuli from the copper fig-

ure 8 but reported the wood rectangle or vice versa, those
errors were classified as copper-wood confusions. The

predominant error type in the test sessions was a wood-

cross confusion. In the training sessions, wood-cross and
copper-cross confusions were approximately equal in

likelihood. There were very few copper-wood confusions

in the experiment.

Second answers

All the results given above are calculated based on the first

answer provided by the participant on each trial. Partici-

pants were allowed to select a second answer when their
first answer was incorrect in both the training and testing

sessions to provide them with further learning experiences.

Because there were three objects, once a participant pro-
vided a first answer that was incorrect, they had to select

one of the two remaining objects for their second answer.

When taking into account both the first and second
answers, participants’ performance was nearly perfect on

all but the first training session [training session 1 (89 %),

training session 2 (97 %), training session 3 (99 %), test
session 1 (96 %), and test session 2 (97 %)].

Reported auditory features

Table 2 shows the auditory features reported by human

listeners after each session was completed. The participants
reported using between one and five features to discrimi-

nate among the objects in the sessions. Participants

reported using more features in the test sessions
(M = 3.83) compared to the training sessions (M = 3.21).

The features reported most often in the training sessions

was pitch and timbre, whereas in the test session the fea-
tures reported most often were pitch, timbre, and loudness.

A majority of the participants (60 %) reported pitch to be

the most important feature in the training session (e.g.,
some participants reported ranking the objects in terms of

pitch; they said copper had the highest pitch, ceramic was

intermediate, and wood had the lowest pitch). There was no
consensus on the most important feature in the test ses-

sions; pitch (36 %), timbre (33 %), loudness (19 %), and
pattern (8 %) were all reported by some participants. The

majority of participants (88 %) reported the echo stimuli

from the novel aspects sounded different than the training

aspect and many noted using a different strategy in the

testing sessions as compared to the training sessions. Many

participants reported using more auditory features (e.g., the
addition of pattern and loudness) in the test sessions than in

the training sessions (e.g., pitch and timbre).

Table 3 shows the echoic cues reported by human lis-
teners during the end-of-the-study interview. The partici-

pants reported using multiple features to identify each

object in the study (M = 2.15). A majority of participants
reported using pitch (76 %) and timbre (56 %) for all

objects, but loudness was reported by 58 % of the partic-

ipants to identify the wood rectangle (e.g., several partic-
ipants said copper was the loudest, ceramic cross was

intermediate, and wood was the quietest).

Discussion

The participants were able to learn to discriminate among
the three objects using echoes from aspect three, and they

successfully generalized that discrimination to four novel

transfer aspects. In the test sessions, their performance on
the training aspect was not significantly different than their

performance on the transfer aspects (except with copper

Table 2 Echoic cues reported by human participants during the
interview phase after each session

Echoic cues Training sessions Test sessions

1 2 3 1 2

Loudness 12 13 14 23 25

Pitch 26 26 25 25 25

Length 8 8 10 13 10

Timbre 20 20 24 23 23

Pattern of change in echo train 14 12 14 15 16

Average number of cues reported 3.12 3.12 3.38 3.81 3.85

Each cell contains the number of participants (N = 26) who reported
using each cue for each session. Participants could report multiple cues for
each session

Table 3 Echoic cues reported by human participants during the end-
of-the-study interview

Echoic cues Object

Cross Copper Wood

Loudness 9 9 15

Pitch 20 19 20

Length 4 1 5

Timbre 14 15 15

Pattern of change in echo train 7 7 8

Average number of cues reported 2.08 1.96 2.42

Each cell contains the number of participants (N = 26) who reported
using each cue for each object after all sessions was completed.
Participants could report multiple cues for each object
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aspect 5). Their performance on the transfer aspects does

not look like a generalization gradient in which perfor-
mance on the transfer aspects near to the training aspect

exceeds performance on transfer aspects far from the

training aspect (c.f. visual object discrimination by pigeons;
Kirkpatrick 2001). This may be because the ‘‘far’’ aspects

are only 13"–24" away from the training aspect. A steeper

generalization gradient would be expected if the transfer far
aspects were 90" or 180" away from the training aspect.

The auditory features reported by participants suggest
that they used some combination of amplitude and fre-

quency over the course of echo trains to identify objects.

However, whether these reported features are actually
sufficient for identifying objects or how these features

might be used to identify objects remains unclear. The

acoustic features that identify an object might vary across
objects or across aspects, such that amplitude cues are

useful for identifying a particular object at a particular

aspect, but not other objects at that same aspect. Similarly,
participants that reported using patterns of frequency and

amplitude over time could have been using those patterns

for some echoes, but not for others. They might also have
been assessing variations in frequency and amplitude over

the course of the entire echo train or for only portions of

the train. To more closely evaluate the acoustic information
relevant for object identification within echo trains, we

trained artificial neural networks (ANNs) to classify objects

based on their echoes and then examined how the networks
accomplished this task.

Neural network modeling

Methods

Network architecture

The ANNs used were multilayer perceptrons with a layer

of 40 input units, a layer of 30 hidden units, and a layer of 3

output units (Fig. 5). Most input units reflected individual
echoes within trains (18 echoes) and features extracted

from those echoes (peak frequency and amplitude). Four

additional units corresponded to summary features (out-
lined below). The appropriate number of hidden units was

determined by pilot testing. No attempt was made to

optimize or minimize network performance with different
architectures. Several networks were piloted and the

architecture that best matched human performance was

used in the reported simulations. Output units corresponded
to object categories. Each hidden unit’s net input from

connections with the input layer was converted to an

activation level using a sigmoid activation function. In
Fig. 5, the dotted line within hidden units shows the point

at which the sum of the weighted input was converted to an

activity level of zero. In the output layer, weighted inputs

from the hidden units were converted to an activation level
using a linear activation function. Twenty networks ini-

tialized with random weights were trained using a standard

backpropagation learning algorithm (Rumelhart et al.
1986) with a learning rate of 0.05. All simulations were

implemented using the Neural Network Toolbox running in

MATLAB (R2010a).

Echo representations

Each echo recording was automatically analyzed using a

customized MATLAB (R2010b) script to extract mea-

surements of amplitude and frequency from echoes.
Eighteen separate amplitude and peak frequency values

were measured from each echo train (i.e., there was a peak

frequency and amplitude measure for each echo). Addi-
tionally, these measures were used to compute means and

standard deviations of amplitude and frequency across all
echoes within a train. These measures were combined into

a vector, normalized to fall between ±1, and then used as

inputs for the ANNs.

Presentation of stimuli to networks

Artificial neural networks were given the same number of

training blocks, test blocks, and stimuli as participants in

the human listening experiment. The number of trials per
block was increased from 9 to 48, because pilot studies

revealed that ANNs required more training to reach com-

parable performance. Noise consisting of randomly gen-
erated values from a uniform distribution between ±0.2

Fig. 5 A depiction of the network architecture used in simulation 2.
Each input layer unit was associated with a feature extracted from
echo trains. Input units had weighted connections to each hidden unit,
and each hidden unit had a weighted connection with each output
unit. Hidden units transformed the sum of the weighted input, plus a
bias parameter, to an activity value with a sigmoid activation
function. Output units operated similarly, except that they employed
linear activation functions
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was added to inputs before presentation to ANNs on each

trial. This was necessary for ANNs to show variations in
performance similar to those observed in humans. As with

humans, networks were given feedback on all trials;

weights were updated when the response generated in the
output units differed from the target response. Target

responses for each echo train were always set at one for the

output unit associated with the object that generated the
echoes and at zero for the remaining two output units. The

output unit with the highest activity was considered to be
the object identity endorsed by a network on a given trial.

The percent of correct identifications during each block

was used as a measure of performance accuracy.

Analyzing network and echo train structure

The absolute value of a weighted connection between an

input unit and a hidden unit within the ANNs indicates how

dependent hidden unit activity is on a particular input
feature. Values close to zero indicate that hidden units are

little affected by differences in the value of an input fea-

ture, whereas absolute values above zero indicate that the
activation of hidden units is more strongly modulated by

changes to that feature. The mean absolute values of

weights between input features and hidden units were
analyzed to determine which of the 40 acoustic features

most strongly determined how echoes were classified.

In the human listening experiment, participants repor-
ted using frequency and loudness cues, but we do not

know from those interviews whether these cues varied in

importance at different points in the echo trains. To get a
sense of how different parts of the echo train and the

features that described entire echo trains were weighted,

mean absolute weight values were also calculated for the
beginning, middle, and end of the train. To further eval-

uate the relative importance of frequency versus ampli-

tude cues, as well as possible shifts in their usefulness
across training sessions, we calculated the difference in

frequency and amplitude weights after training and after

testing.
The ANNs created internal representations of echo

trains via their hidden units in order to identify objects. It

was the weights on these representations that ultimately
determined the output values for any given echo train.

Analyses of input weights only reveal the relative impor-

tance of input values. They do not reveal how ANNs use
inputs to identify each object. To explore this issue, the

most heavily weighted hidden units for each output unit

from a single representative network were examined.
The ability of humans or ANNs to distinguish and cat-

egorize echo trains depends on the similarities between

trains. To get a better sense of how frequency and ampli-
tude features varied between echo trains recorded from

different objects, we analyzed ANN inputs using a self-

organizing map (SOM). The SOM learned to spatially
organize echoes based on feature similarity, making it

possible to visualize differences between echo trains

varying along several dimensions (for further details, see
Kohonen 2001). SOMs cluster inputs without information

about object identity, providing a way to show how echoes

from different objects differ acoustically. A 3 9 3 SOM
was implemented, allowing echoes to be sorted in terms of

their similarity to nine prototypes automatically con-
structed from all echo trains.

Results

Training sessions

Figure 2b shows the accuracy for the ANNs in the training

sessions. As with human participants, the ANNs learned to

identify the ceramic cross more slowly than the other two
objects. Networks showed larger decreases in performance

accuracy during the blocks where new echo exemplars

were introduced than did humans ([80 % in blocks 9 and
11). Nevertheless, on the last block of network training,

performance accuracy was 80 % or higher for all objects.

Test sessions

The ANNs successfully transferred their discrimination to
the four novel object aspects. Figure 3b shows the dis-

crimination performance in the test sessions for the aspect

ANNs were trained on (3) and the four transfer aspects (1,
2, 4, and 5). ANN performance matched human perfor-

mance in that the networks successfully identified all three

objects at all five aspects. However, the simulations did not
replicate the finding from the human listening experiment

that performance on aspect 5 for the copper figure 8 was

worse than aspects 3 and 4.

Errors

As in the human listening experiment, errors were divided

into three types by pairing the objects: copper-wood

confusions, wood-cross confusions, and copper-cross
confusions. The mean percentages of confusions were:

wood-cross = 35 %, copper-cross = 35 %, wood-cop-

per = 30 %. Each confusion type contributed to total
error similarly across blocks of training and test. The

ANNs therefore replicated the finding from the human

listening experiment that wood-copper confusions occur-
red less than wood-cross and copper-cross confusions.

However, the percentage of wood-copper confusions

made by ANNs was not as low as in the human listening
experiment.
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Auditory features

Figure 6 shows the relative importance given to auditory

features. Amplitude features were weighted similarly

throughout echo trains. Peak frequency information from
echoes, however, was weighted higher for the later portions

of echo trains. Figure 6 shows that weights for the fre-

quency of echoes 7–18 are higher than for echoes 1–6. The
figure also shows that mean peak frequency was weighted

more heavily than mean amplitude and that variation in

frequency was weighted more heavily than variation in
amplitude. Weighing of cues by networks was consistent

with the cues reported by humans (i.e., more humans

reported using frequency than amplitude; see Tables 2 and
3). However, difference scores (frequency |weight|—

amplitude |weight|) for individual echoes showed that

whether ANNs weighted frequency or amplitude more
heavily was dependent on the echo. Comparisons of cue

weighting before and after testing showed that the ANNs
learned to weight amplitude features more heavily during

testing than was the case in training.

Hidden unit patterns

Table 4 lists the most positively and most negatively
weighted connections for each output unit. The connections

that maximally activated or maximally inhibited output

units overlapped across objects. For example, the hidden
unit that most strongly activated the output unit corre-

sponding to the wooden object, simultaneously strongly

inhibited the output unit corresponding to the copper object
(designated Wood ?/Copper). This particular hidden unit

responded to inputs with high amplitudes, high peak fre-

quencies, and large variations in amplitude. Consequently,
the ANN used these features as cues to both reject a train as

being from a copper object and to accept the train as

coming from a wooden object when the inputs were high.

When the inputs were low, the reverse classification
occurred. The hidden unit that most strongly inhibited

activation of the wooden object unit was sensitive to these

same cues, inhibiting this output unit most strongly when
an echo train included low amplitude echoes, low peak

frequencies, and little variation in amplitude. Other hidden

units had similarly symmetric effects on the activation of
output units indicating a copper or ceramic object (e.g.,

strong activation of the ceramic unit coupled with strong
inhibition of the copper unit). The copper object output unit

was triggered by echo trains with high peak frequencies

and highly variable peak frequencies, whereas the ceramic
output unit was activated by echo trains with low peak

frequencies that varied little across echoes.

Echo similarity map

Figure 7 shows results from SOM analyses of echo trains.
Each unit within the SOM corresponds to one of the nine

prototypical sets of input values identified by the SOM. Pie

charts associated with each unit show how many inputs of
each object type are associated with each prototype. Some

units within the SOM were activated by echoes from only

one type of object, showing that the features given to the
SOM were sufficient for identifying a subset of objects. For

instance, nine echo trains from the wooden object activated

one unit at the bottom of the map, and nine echo trains
from the ceramic object activated an adjacent unit. Thus,

activation of either of these two units identifies the object

that was ensonified. Echo trains from the copper figure 8
activated unique units on both the left and right sides of the

SOM, effectively identifying that object for at least a

subset of echo trains. The three SOM units along the top,
however, each responded to echo trains from multiple

objects. The overlap in these units suggests that several

echo trains have amplitude and frequency properties that
are not systematically associated with particular objects.

Discussion

We trained and tested ANNs using procedures comparable

to those used in the human listening experiment. ANNs
were able to identify objects from echo trains at levels

comparable to human participants and generalize the

identification of objects to novel aspects in similar ways.
One benefit of ANNs is that the mechanisms that they use

to differentiate patterns can be analyzed in detail and can

then be used to generate novel hypotheses about the kinds
of cues or higher-level features that humans or dolphins use

to perform this task.

The way in which ANNs learned to identify objects was
in some manners consistent with human self-reports of the
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Fig. 6 Analysis of the relative value of weights between input units
and hidden layer units. Relative weights are shown for each third of
the echo train along with mean and standard deviation features
derived from the entire echo train
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features they used. For instance, more humans reported

using amplitude after testing and the networks similarly

weighted amplitude more after testing than after training.
Also, more humans reported using frequency than ampli-

tude and networks weighed the mean frequency more than

mean amplitude. However, analysis of ANN input weights
did not show a bias for making greater use of frequency

information over amplitude information for individual

echoes. For some echoes, frequency information was more
important, but for others, amplitude was more important.

The simulations suggest that differentially weighing the

importance of features from each echo facilitates object

identification and may account for participants’ self-reports
of using a combination of frequency and amplitude fea-

tures. Tracking the variations in features across echoes may

also be useful for identification as ANNs weighed the
standard deviation of frequency and amplitude higher than

most other cues. Half to two-thirds of the human listeners

reported using the pattern of change over time to identify
objects in the experiment.

Self-organizing map analyses showed that frequency,
amplitude, and combinations of those features within an

echo train can distinguish some objects. However, one

feature may not be sufficient to distinguish an object from
all other objects. In particular, the SOM grouped some

echo trains from different objects as all being similar.

Separating these similar echoes may require the extraction
of higher-level features involving a combination of fre-

quency and amplitude cues that can only be identified

when specific information about object identities is
available (e.g., in the form of feedback). It may also be

the case that more fine-grained analyses of acoustic

properties are necessary to reliably distinguish a subset of
echo trains.

Given the structure of the SOM, participants in the

human listening experiment may have picked up on the fact
that the amplitudes of echoes coming from the wood

rectangle and ceramic cross were higher than echoes

coming from the copper figure 8 or were varying less in
peak frequency across echoes. Distinguishing wood rect-

angle examples from ceramic cross examples might then

have been frequency-dependent, because peak frequency
for several echoes and mean peak frequency was higher for

the SOM unit that ceramic examples activated. We cannot

know for sure whether humans used the same acoustic
features that the SOM and ANNs used, but the simulations

clearly show that when ANNs differentially weigh acoustic

cues in the ways shown in these simulations, then this leads
to the levels of performance, generalization profiles, and

errors that are observed in humans.

Table 4 The most positively and negatively weighted hidden units for each output unit

Input feature Hidden unit

Wood?/copper- Wood- Copper? Ceramic? Ceramic-

Mean amplitude 0.3838 -0.067 -0.1113 0.0391 -0.2189

Mean peak frequency 0.4182 -0.427 0.3296 -0.2885 0.0419

SD amplitude 0.3579 -0.3635 -0.0594 -0.0752 -0.2555

SD peak frequency 0.0706 0.1192 0.4054 -0.2793 0.3501

Hidden units are labeled with respect to how output units weighed their activities. The object name indicates the hidden unit to output unit
connection. Plus and minus symbols indicate whether that connection was positively or negatively weighted. For instance, the wood unit is a unit
whose connection to wood was inhibitory (high activities inhibited wood identification). Input features determining hidden unit activations are
also shown

Wood Copper Ceramic

(1,1)

(2,1)

(3,1)

(1,2)

(2,2)

(3,2)

(1,3)

(2,3)

(3,3)

Fig. 7 Results from a 3 9 3 SOM grid trained with all echo trains
used in the human listening experiment. A depiction of units that
represent prototypical echo trains from each object activated in the
trained map. Pie chart size represents the number of echoes activating
that unit and shading indicates the proportion of those echoes that
were from each object
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General discussion

Both humans and neural networks were able to learn to

identify objects using echo trains from those objects and to

recognize the objects based on echoes reflected from novel
aspects. These findings provide evidence that representa-

tions of acoustic information from these objects can sup-

port object constancy. Different theories propose that
visual object constancy is achieved through the formation

of a single representation based on the distal stimulus (e.g.,

Marr 1982) or the formation of different representations
constructed from different views of the object (e.g., Tarr

and Pinker 1989). These theoretical explanations about the

representations underlying object constancy have yet to be
thoroughly explored for the auditory modality. The results

from the current study with echo stimuli suggest that

generalizations to novel aspects can occur without assum-
ing a distal representation of the object.

The objects used in the current study varied in material,

shape, and size. In another study, human listeners presented
with echoes from objects made from the same material that

vary only in shape and size and trained on a limited set of

object aspects show poor performance when discriminating
between objects at some novel aspects (DeLong et al.

2013). Studies of visual object recognition also show that

object characteristics and the specific features of the
objects play a role in determining performance on novel

aspect angles (e.g., Tarr et al. 1997). The finding that
human listeners were able to generalize across novel

aspects when the objects varied in material in this study,

but were not always able to do so when objects did not
vary in material (DeLong et al. 2013) matches the perfor-

mance of dolphins in two previous studies (Au and Turl

1991; Nachtigall et al. 1980).
The more interesting predictions of the current study

relate to which objects and which aspects are most likely to

prove challenging for a dolphin and more specifically
which acoustic features may be particularly important for

performing such tasks. Self-reports from human partici-

pants and detailed analyses of ANN classification mecha-
nisms both suggest that learning to recognize objects from

echoes involves using combinations of cues when making a

classification decision. Attending to either absolute fre-
quency differences or absolute amplitude differences is not

sufficient to correctly classify all echo trains. In some

cases, selective attention to acoustic features during seg-
ments of an echo train or to variations in amplitude or

frequency across echoes will lead to more successful

identification. Discovering such idiosyncratic feature pat-
terns likely requires incremental perceptual learning

mechanisms. In principle, the kinds of auditory patterns

identified by humans, dolphins, and neural networks could
differ significantly. However, the fact that humans and

ANNs discovered similar acoustic features when learning

to distinguish man-made objects suggests that some fea-
tures may be intrinsically more useful for making such

distinctions. In particular, analyses of hidden unit responses

within ANNs indicate that opponent process mechanisms
(in which features that distinguish objects lie on opposite

ends of a continuum) may be particularly useful in iden-

tifying complex objects.
In the current experiment, the relevant dimensions for

classification did not correspond to the simple dimensions
of frequency, amplitude, or time usually emphasized in

auditory analyses, but instead to more complex spaces in

which dimensions might correspond to correlated changes
in frequency, amplitude, and echo stability. A better

understanding of how dolphins organize auditory space

(and echoically identify targets) might thus be gained by
monitoring the echoes received by freely moving dolphins

that are echoically interrogating objects of various types

from various angles and then training ANNs to associate
trains of echoes from these recordings with objects of

particular types. To the extent that ANNs can succeed at

this task, they are likely to do so using complex object-
related dimensions that do a good job of differentiating

objects, as was observed in the current study. It seems

likely that the neural systems underlying dolphin echolo-
cation would, through either evolution or experience,

converge on similarly useful dimensions for differentiating

objects.
There were some differences in the performance of

ANNs in comparison with humans during both training and

transfer tests. Several factors can potentially account for
these differences. Human participants came to the task with

extensive auditory experience, biases about what sounds

are like, and biases about how to interpret them. In con-
trast, ANNs started from a tabula rasa when learning the

identification task. Additionally, the auditory features that

humans were presented with differed from the information
made available to the neural networks. In particular, ANNs

were presented with precise absolute measures of ampli-

tude and individual frequencies that were retained with
perfect accuracy, whereas human participants heard phys-

iologically transformed variations in loudness, pitch, and

timbre. Unlike the inputs used with ANNs, the auditory
features experienced by human participants had a resolu-

tion that varied as a function of frequency and amplitude,

as well as across trials due to habituation. Some of these
differences in acoustic signal processing could potentially

be overcome by transforming measured acoustic features in

ways that mimic processing in human auditory pathways
(Patterson et al. 1995). Similarly, the performance of both

ANNs and humans could potentially be made more similar

to that of echolocating dolphins by transforming signals in
ways that account for differences in the temporal and
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spectral resolving capacities available to dolphins (Bran-

stetter et al. 2007). Even if these more sophisticated
approaches succeed in homogenizing performance across

species and machines, this still leaves open the possibility

that a dolphin’s auditory perception of objects differs
radically from that of humans. After all, no one would

suggest that the ANNs in the current study are perceiving

echo trains in the same ways as human participants (or at
all) despite many similarities in their learning and gener-

alization profiles.
One limitation of the current study is that although

both ANNs and human participants acquired at least

somewhat aspect-independent auditory representations
of objects, it remains unclear what properties of objects

made them recognizable across aspects. Ensonified

objects varied in shape, size, and material. Certainly,
differences in material between objects could potentially

generate differences in reflected echoes that would enable

them to be distinguished. In this case, one might expect
that the same material-generated cues would be available

to distinguish objects regardless of aspect (since the

material does not change with aspect). However, the SOM
analyses revealed that there were no acoustic cues that

distinguished all three objects across all aspects. This may

be because the reflectivity of different materials can dif-
ferentially impact echoes depending on an object’s shape.

For example, a glass sphere will not return the same

echoes as a glass disk of equal radius. It seems likely that
some combination of material-related cues and shape-

related cues combine to enable identification of objects

from multiple aspects.
One way to experimentally assess whether the acoustic

features used by humans and ANNs to identify objects

from their echoes are also used by dolphins is through
phantom echo studies. Phantom echo experiments involve

projecting acoustic signals that mimic the echo returns that

would have occurred if an object had actually been present.
The advantage of this approach is that specific acoustic

cues can be selectively filtered from (or added to) the

phantom echoes. So, for example, the echo train recorded
from a ceramic object might be normalized so that all

amplitude information is removed or so that all frequencies

are equalized in terms of energy. Furthermore, the acoustic
features of some objects can be gradually superimposed on

or morphed into echo trains from other objects so that the

threshold at which categorical perception switches from
one object to another can be identified (as has been done in

speech perception studies). A long-term study is just

beginning in which echoes from the same three objects
used in the current study will be presented to a dolphin

subject. The dolphin will be exposed to the same training

stimuli and novel test stimuli heard by the human listeners.
In subsequent tests, the dolphin may be presented with

modified echoes based on the salient auditory features

identified by the human listeners and the ANNs.
Experiments with dolphins and other echolocating spe-

cies generally require extensive resources and time. Con-

sequently, techniques for identifying key hypotheses that
can be tested through such experiments are particularly

important. A combination of experimental results from

humans, computer simulations, and naturally echolocating
species is likely to provide greater understanding of the

representational processes underlying echoic identification
of objects and can also clarify the extent to which findings

from visual object recognition research are applicable to

perception in other modalities.
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