
People generalize what they learn about perceived 
events (Shepard, 1987). Typically, the more perceptually 
similar new events are to familiar ones, the more likely one 
is to generalize. For instance, we generalize the identity of 
objects to views at orientations we have never experienced, 
but generalization decreases as novel orientations become 
less similar to familiar views (Ashworth & Dror, 2000).

Learning experiences can change the way we generalize 
and, in some instances, can cause novel stimuli to be rec-
ognized more often than a trained stimulus (Baron, 1973; 
Blough, 1975; Dukhayyil & Lyons, 1973; Galizio, 1980; 
Gibson, 1969; Guillett et al., 2010; Hearst, 1971; Livesey 
& McLaren, 2009; Lynn, Cnaani, & Papaj, 2005; McLaren 
& Mackintosh, 2002; Purtle, 1973; Spence, 1937; Spetch, 
Cheng, & Clifford, 2004; Terrace, 1966; Thomas, Mood, 
Morrison, & Wiertelak, 1991; Wills & Mackintosh, 1998; 
Wisniewski, Church, & Mercado, 2009). For example, a 
person might be more accurate at recognizing and naming 
a caricature of Richard Nixon than a photograph of him. 
The photograph would be more physically similar to previ-
ously experienced Richard Nixon images, but the carica-
ture would likely have exaggerations of features that make 
his face unique. These exaggerations of learned unique fea-
tures likely contribute to the rapid recognition and higher 
identification accuracy for caricatures (Gibson, 1969).

People trained to distinguish faces in the laboratory 
show similarly distorted sensitivities. Spetch et al. (2004) 
formed a continuum of faces by morphing a unique face 
with an average face. People were trained to identify a 
particular face on the continuum by responding “yes” 
whenever it was presented and “no” whenever a similar 
face was shown. Later, when they were shown many faces 
along this continuum, they gave “yes” responses most 
often to a novel face that was displaced further along 

the continuum from the face that they responded “no” 
to during training. This effect has been seen with several 
other methods, modalities, and stimulus dimensions. For 
instance, social stereo types can result from attributes as-
sociated with familiar stimuli being strongly endorsed 
for novel stimuli that have similar physical character-
istics (Queller, Schell, & Mason, 2006). Also, auditory 
discrimination training has led to shifts in the identifi-
cation of frequency- modulated sweeps (chirping sounds) 
of different repetition rates (Wisniewski et al., 2009) and 
birdsong notes from a different category than the trained 
note (Guillett et al., 2010). Such learning-related shifts in 
generalization are called peak shifts, because the peak of 
endorsement occurs at a stimulus other than the one that 
was trained. The size of peak shift depends on the similar-
ity between the exemplars experienced during training, 
with a certain degree of similarity needed to produce the 
effect and greater similarity typically leading to larger 
peak shifts (for a review, see Purtle, 1973).

Several theories explain peak shift by assuming incre-
mental adjustments of weights between static stimulus 
representations and outputs (Blough, 1975; Guillett et al., 
2010; McLaren & Mackintosh, 2002; Petrov, Dosher, & 
Lu, 2005; Saksida, 1999; Wills & Mackintosh, 1998).1 
These theories posit that when an event is experienced, 
it activates multiple representational elements, some of 
which are shared across different events and some of 
which are unique to that event. During learning, unique 
elements become more strongly associated with the out-
put. If a novel event activates these elements to a greater 
degree than does the trained stimulus, an individual will 
respond more to the novel event. These incremental theo-
ries predict that peak shift should change in parallel with 
learning. Specifically, if learning increases the weights 
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training sessions. He found that peak shift was prominent 
after 15 training sessions but was no longer present after 
60 training sessions, showing that peak shift can dissipate 
with extended training. However, later pigeon experi-
ments did not show this effect. Some pigeons trained for 
as many as 115 sessions continued to show a peak shift ef-
fect (Dukhayyil & Lyons, 1973; Hearst, 1971). The previ-
ous studies are thus equivocal with respect to the stability 
of peak shift, even though incremental-learning theories 
have specific predictions about what should happen. 

To further investigate the impact of different amounts 
of discrimination training on shifts in generalization, we 
trained participants to discriminate frequency-modulated 
(FM) sweeps of different repetition rates. Groups of par-
ticipants were trained for different numbers of trials and 
were then tested using a wide range of stimuli along the 
rate continuum. To our knowledge, all incremental the-
ories of learning predict that peak shift should become 
stronger with increased amounts of training. On the other 
hand, theories assuming nonlinear learning dynamics (be-
cause they either allow representations to change or allow 
changes in processes) predict nonlinear transitions in gen-
eralization. We expected to see the latter.

METHOD

Participants
One hundred two participants from the University at Buffalo, 

State University of New York, participated in partial fulfillment of 
their introductory psychology course requirements. Seventeen par-
ticipants were randomly assigned to groups trained for 60, 100, 140, 
180, 220, or 260 trials. Three participants, one each from the groups 
trained for 60, 140, and 180 trials, were dropped for excessive “tar-
get” responding (over 50%) in the generalization test. One partici-
pant from each of the remaining groups was randomly dropped to 
create equal sample sizes.

Stimuli and Apparatus
Stimuli were 1-sec-long sounds consisting of trains of FM tonal 

sweeps (created with MATLAB 6.5). Individual sweeps increased in 
frequency from 500 to 4000 Hz (see Figure 1). All the sounds were 
the same duration and spanned the same range of frequencies but 
varied in repetition rate. Subjectively, the stimuli sound like chirps 
that vary in how fast they are played. The repetition rates used were 
4.5, 5.2, 6.0, 6.9, 7.9, 9.1, 10.5, and 12.1 Hz. Earlier work showed 
that training with these sounds reliably produced peak shift (Wis-
niewski et al., 2009). Sounds were presented and responses were 
collected using DMDX experimental software (Forster & Forster, 
2003) on IBM-compatible computers. Participants heard the sounds 
at conversational volume through Audio-Technica ATH-M40fs 
headphones and responded using a computer keyboard.

Design
The design was a 6  8 mixed factorial with training group as the 

between-participants and stimulus rank as the within-participants 
factors. The six levels of training group were 60, 100, 140, 180, 220, 
and 260 training trials, respectively. The eight levels of the stimulus 
rank fixed factor were created by rank ordering the repetition rates 
as follows: 1 (4.5 Hz), 2 (5.2 Hz), 3 (6.0 Hz), 4 (6.9 Hz), 5 (7.9 Hz), 
6 (9.1 Hz), 7 (10.5 Hz), and 8 (12.1 Hz).

Procedure
Participants were instructed to press the right shift key marked 

“Target” when they heard the target sound and to press the left shift 

of fixed distinctive elements, peak shift should become 
increasingly evident as a person learns, because learning 
increases emphasis on those unique elements.

From this perspective, peak shift reflects modifications 
in processing that facilitate discrimination, are an adap-
tive means for classifying stimuli, and should develop 
progressively before reaching a stable end state. In ac-
cordance with these ideas, some animal researchers have 
hypothesized that generalization shifts are an end state of 
learning important to species survival (Lynn et al., 2005). 
Even within the uniquely human domain of language, 
peak shift is seen as an end state in the perceptual learn-
ing of phoneme categories (for a review, see Jusczyk & 
Luce, 2002) and is thought to contribute to phonological 
evolution across generations (Martindale, 2006).

Peak shift, however, may not always be an adaptive end 
state if it results in the endorsement of incorrect categories 
(Guillett et al., 2010) or stereotyping (Queller et al., 2006). 
Peak shift may be partially beneficial because it results in 
the separation of training stimuli, but it also has the ad-
verse consequence of reducing the precision of discrimi-
nation abilities with other stimuli. Furthermore, shift may 
not always be an end state, because the perceptual similar-
ity that modulates peak shift can drastically change over 
the course of practice and some of those changes may not 
involve incremental reweighting of connections between 
representations and outputs. For instance, the neural rep-
resentations evoked by the presentation of different stimuli 
can become less similar through spatial separation within 
the cortex, so that there is less neural overlap between stim-
uli (Blake, Heiser, Caywood, & Merzenich, 2006; Blake, 
Strata, Churchland, & Merzenich, 2002; Goldstone, 1998; 
Mercado, 2008; Polley, Steinberg, & Merzenich, 2006). 
Learned adjustments of attention can have comparable ef-
fects by enhancing the resolution of different dimensions or 
features in a stimulus (Nosofsky, 1986). Switching the type 
of representation or processing strategy used to characterize 
a category can also alter similarity to the category (Johan-
sen & Palmeri, 2002; Smith & Minda, 1998). Because neu-
ral circuits differ in their capacity to resolve fine details, it 
has been hypothesized that decreased perceptual similarity 
can come about by learning to switch the locus of stimulus 
processing to circuits with the most appropriate perceptual 
resolution (Ahissar, Nahum, Nelken, & Hochstein, 2009). 
These proposed mechanisms assume that representations 
for experienced events are dynamic over the course of 
learning and that they may change in nonlinear ways. If 
the representations or processes become dissimilar enough 
with practice, there may be a point at which peak shift no 
longer occurs. These theories predict that peak shift may be 
a transitional state, rather than the end state of learning.

There have been relatively few investigations into how 
different amounts of training affect peak shift. In one 
study, Galizio (1980) found that participants trained for 
40 trials showed more shift on an auditory frequency con-
tinuum than did participants trained for 10 trials, suggest-
ing an incremental increase in peak shift. In another study, 
Terrace (1966) trained pigeons on a wavelength discrimi-
nation and tested generalization after 15, 30, 45, and 60 
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ing group was not significant (F  2). The ANOVA also 
revealed a significant stimulus rank  training group in-
teraction [F(35,630)  2.316, p  . 01, 2

p  .114], indi-
cating differences between the generalization gradients of 
the groups.

To determine whether there were differences in peak 
shift between training groups, both the mean and the peak 
locations of gradients for target responses were calculated 
for each participant. Gradient means have been used exten-
sively to measure peak shift in past studies (e.g., Thomas 
et al., 1991). Adding gradient peak allowed a compari-
son of shift between groups based on actual peak, rather 
than on peak estimated from gradient means. A peak of a 
gradient was defined as the stimulus for which maximal 
responding was observed. If maximum responding was 
equal for two or more stimuli, the peak was considered to 
be midway between the stimuli. For example, if Sounds 5 
and 6 received the same proportion of responses, the peak 
was considered to be 5.5. The average gradient mean 
and gradient peak for each training group are shown in 
Figure 3.

A one-way ANOVA using the gradient means was sig-
nificant [F(5,90)  2.77, p  .022, 2

p  .13], with a qua-
dratic contrast [F(1,90)  4.34, p  . 04, 2

p  .046]. The 
linear contrast was not significant [F(1,90)  2.26, p  
.137]. This shows that gradient means initially increased 
as training increased, then decreased with further training. 
One-tailed t tests were performed to determine whether 
any of the means differed significantly from the target. 
The t tests were one-tailed because peak shift occurs away 
from the nontarget training stimulus. All t tests were inter-
preted with Bonferroni alpha adjustments for 12 compari-
sons. The t tests revealed that Group 180’s gradient mean 
of 5.76 was significantly different from 5 [t(15)  4.539, 

key marked “Not Target” if they heard anything else. They were told 
that during training trials, they would receive feedback but, during 
testing, they would not. They were also told to guess if they were 
unsure and that, during the test, there would be many more nontar-
gets than targets.

During discrimination training Sound 5 (7.9 Hz) was the target 
and Sound 4 (6.9 Hz) was the nontarget (see Figure 1). A pretrain-
ing period served to familiarize participants with their task and the 
target sound. The pretraining consisted of four sample trials in which 
one slower and one faster nontarget (one 4 Hz, one 13 Hz) and two 
target sounds were presented. Statements appeared on the screen 
during these trials that said, “This is not a target” in the presence of 
the slower and faster sounds and “This is a target” in the presence 
of the target sound. 

Following the pretraining, the participants in each group re-
ceived their assigned number of training trials, during which they 
heard Sound 4 and Sound 5 in a pseudorandomized order, so that 
no more than five of the same sounds were played consecutively. 
The word “Correct” was presented on the screen if a participant 
correctly identified Sound 5 as “Target” or Sound 4 as “Not Target.” 
The word “Wrong” was presented if a misidentification was made. 
After training, the participants were given a reminder on the screen 
that there would be many more nontargets than targets. They were 
also reminded that sounds in the test were both slower and faster than 
the target. All the participants were given 96 trials of generalization 
testing without feedback. Each sound, 1–8, was presented 12 times 
in pseudorandomized order so that no more than two of the same 
sounds were played consecutively.

RESULTS

Each group’s proportion of “Target” responses is plot-
ted in Figure 2.2 A 6  8 ANOVA with training group as 
the between-participants and stimulus rank as the within-
 participants factor revealed a significant main effect of 
stimulus rank [F(7,630)  60.97, p  .001, 2

p  .404]. 
This shows that the different stimulus ranks led to differ-
ent proportions of responding. The main effect of train-
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Figure 1. Spectrograms of the frequency-modulated sweeps used. Stimuli are rank ordered, 1–8, from slowest to fastest. Stimuli used 
as “Target” and “Not Target” during training are labeled.
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To examine changes in perceptual discrimination abil-
ity, d  was calculated with correct responses to the target 
counted as hits, and “Target” responses to Sounds 1–4 
counted as false alarms. These values were significantly fit 
to a linear contrast [F(1,90)  4.851, p  .03, 2

p  .051], 
indicating that with more training trials, people became bet-
ter at identifying the target from the side of the distribution 
containing the nontarget training stimulus. A post hoc least 
significant difference test also showed that the d  values for 
groups trained for 60 (p  .028, SE  .34), 100 ( p  .041, 
SE  .34), and 140 ( p  .009, SE  .34) trials were sig-
nificantly lower than for participants trained for 260 trials, 
suggesting that practice led to greater perceptual learning. 
Figure 4 displays the d  values for each training group.

p  . 001, Cohen’s d  2.34]. Group 140’s gradient mean 
[t(15)  1.262, p  .112], as well as all other groups’ gra-
dient means (t  1), were not. Another one-way ANOVA 
was performed on the training groups’ peaks. This 
ANOVA was also significant [F(5,90)  2.531, p  .034, 

2
p  .12], with a quadratic contrast [F(1,90)  8.515, p  

.004, 2
p  .086]. The linear contrast was not significant 

(F  2). One-tailed t tests revealed that the average peak 
for Group 180 (5.94) was significantly different from 5 
[t(15)  3.137, p  .004, Cohen’s d  1.62]. Group 140’s 
average peak of 5.91 was not significantly different from 
5 with the Bonferroni correction [t(15)  2.102, p  .027, 
Cohen’s d  1.09]. All the other t tests were also not sig-
nificant (t  1).
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results. For instance, if neural representations evoked by 
the stimuli differentiated or if attention increased the reso-
lution of relevant dimensions, there may have been a point 
in learning when novel sounds no longer activated the ele-
ments of the representation that caused shift. It could also 
be that switching to a completely new set of elements by 
switching the area of perceptual processing (Ahissar et al., 
2009) nullified the effect of earlier associations between 
features and outputs that contributed to peak shift.

Why then does peak shift occur if it is ultimately not 
critical for improved discrimination? One possibility is 
that the increased generalization to novel stimuli helps 
to further develop representational precision between 
stimuli on the dimension. Peak shift has occurred along 
with increased discrimination performance (Wisniewski 
et al., 2009), and incremental reweighting theories spe-
cifically predict that greater perceptual discriminability 
accompanies the phenomenon. The present results fur-
ther suggest that after peak shift dissipates, discrimina-
tion performance continues to improve. It could be that 
the changes underlying peak shift make it easier to refine 
the representation of the target and that this refinement 
leads to greater perceptual precision (Blake et al., 2006; 
Blake et al., 2002). For instance, peak shift may allow 
more effective engagement of the neural circuits needed 
for processing the most relevant components (McLaren 
& Mackintosh, 2002), allowing differentiation of sensory 
representations or the allocation of attention to particu-
larly important dimensions. The changes underlying peak 
shift may similarly make it easier to reconfigure percep-
tual processing to the appropriate neural circuits (Ahissar 

DISCUSSION

In this study, participants who learned to distinguish 
a fast FM sweep rate (target) from a slightly slower rate 
(nontarget) with different amounts of training were tested 
on their ability to identify the target rate among a range of 
rates. Greater misidentification of a faster novel rate as the 
target (peak shift) was seen only after intermediate lev-
els of training and dissipated with increased experience. 
Previous studies have shown that peak shift is stable over 
time (Spence, 1937; Wisniewski et al., 2009), suggesting 
that the observed shifts were due to different amounts of 
training, and not simply to differences between groups in 
the absolute passage of time. 

Current incremental learning theories that rely on static 
representations do not predict that peak shift should dissi-
pate with extended training. If incremental weight changes 
between outputs and stable components of a representation 
caused shift and those weight changes became stronger 
with practice, the misidentification of a faster stimulus as 
the target should have become stronger (or at least stable) 
after it initially appeared. The fact that this did not occur 
does not mean that peak shift and perceptual learning do 
not involve any incremental mechanisms, but it does sug-
gest that additional mechanisms are needed to fully explain 
the data. If it is assumed that other mechanisms of learning 
dynamically adjust the representational elements evoked 
by a stimulus over the course of training (Ahissar et al., 
2009; Goldstone, 1998; Johansen & Palmeri, 2002; Mer-
cado, 2008; Nosofsky, 1986; Polley et al., 2006; Smith & 
Minda, 1998), an incremental mechanism could predict the 
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NOTES

1. For reviews of other theories of peak shift, see Thomas et al. (1991) 
and Lynn et al. (2005).

2. The percent correct was 28%, averaged across groups, during 
generalization testing. Chance was 12.5%.
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revision accepted for publication June 11, 2010.)

et al., 2009). Therefore, learning the distinctive elements 
of a sensory event may make it easier to process its most 
informative features.

The present results show that peak shift is not always an 
end state of learning but, rather, can be a transitional state 
occurring at intermediate levels of training. This is the 
first report of such transitions in generalization gradients 
with humans, making it difficult to assess whether simi-
lar shifts might occur during learning with other stimulus 
dimensions or tasks. The results do suggest, however, that 
learning involves more than just the reweighting of as-
sociations between outputs and elements of a static rep-
resentation and that prior explanations for why peak shift 
occurs need to be reconsidered. 
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